Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Stress shielding and the need for secondary surgery are the two major challenges faced by permanent metallic implants, and the emerging Ca-Mg-Zn calcium-based bulk amorphous alloys, with Young’s modulus comparable to that of human bone, good biocompatibility, and in vivo degradation, are highly promising materials for bioimplants. Few studies have been reported on the glass formation ability (GFA) and corrosion degradation behavior of Ca-Mg-Zn amorphous alloys in the human body. In this work, we discuss a study on Ca53+xMg20Zn27–x (x = 0, 2, 4, 6, 8, 10) alloys, focusing on changes in Zn content near eutectic points and their impact on microstructure and biological corrosion behavior. A copper mold spray casting method has been developed to prepare amorphous bar alloys and amorphous crystalline composite bar alloys with a diameter of 3 mm, which has been verified by X-ray diffraction, electrochemical treatment, and immersion tests. The experimental results demonstrated that the Ca3Zn and CaZn2 phases were precipitated in the 3 mm bar material Ca53+xMg20Zn27–x (x = 0, 2, 4), and Ca53+xMg20Zn27–x (x = 6, 8, 10) was completely amorphous. The Ca63Mg20Zn17 alloy showed the best glass-forming ability, while the Ca59Mg20Zn21 alloy exhibited superior corrosion resistance. Cytotoxicity experiments showed that Ca-Mg-Zn alloys have good biocompatibility and can be used as biomedical materials.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
93--101
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
- 1 School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, P.R. China. 2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
autor
- 1 School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, P.R. China. 2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
autor
- 1 School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, P.R. China. 2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
autor
- 1 School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, P.R. China. 2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
autor
- 1 School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, P.R. China. 2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Bibliografia
- [1] CAO J.D., KIRKLAND N.T., LAWS K.J. et al., Ca-Mg-Zn bulk metallic glasses as bioresorbable metals, Acta Biomater., 2012, 8 (6), 2375–2383, DOI: 10.1016/j.actbio.2012.03.009.
- [2] CORMAC J. BYRNE et al., Materials science. Bulk metallic glasses, Science, 2008, DOI: 10.1126/science.1158864.
- [3] CSPA, BPR, CMD et al., New Mg-Ca-Zn amorphous alloys: Biocompatibility, wettability and mechanical properties-Science Direct, Materialia, 2023, 12, DOI: 10.1016/j.mtla.2020.100799.
- [4] LI Q.F., WENG H.R., SUO Z.Y. et al., Microstructure and mechanical properties of bulk Mg-Zn-Ca amorphous alloys and amorphous matrix composites, Materials Science and Engineering: A, 2008, 487 (1–2), 301–308, DOI: 10.1016/ j.msea.2007.10.027.
- [5] LI Z., GU X., LOU S. et al., The development of binary Mg-Ca alloys for use as biodegradable materials within bone, Biomaterials, 2008, 29 (10), 1329–1344, DOI: 10.1016/ j.biomaterials.2007.12.021.
- [6] LIU Q.S., Study on degradation behavior and mechanical properties of Biocompatible Mg-Zn-Sn-Sr materials, Chongqing University, 2022, DOI: 10.27670/d.cnki.gcqdu. 2020.001808.
- [7] RAMYA M., SARWAT S.G., UDHAYABANU V. et al., Role of partially amorphous structure and alloying elements on the corrosion behavior of Mg-Zn-Ca bulk metallic glass for biomedical applications, Materials and Design, 2015, 86, 829–835, DOI: 10.1016/j.matdes.2015.07.154.
- [8] SENKOV O.N., SCOTT J.M., Glass forming ability and thermal stability of ternary Ca-Mg-Zn bulk metallic glasses, Journal of Non-Crystalline Solids, 2005, 351 (37–39), 3087–3094, DOI: 10.1016/j.jnoncrysol.2005.07.022.
- [9] SZYBA D., BABILAS R., BAJOREK A., Structural and electrochemical study of resorbable Ca32Mg12Zn38Yb18-xBx (x = 1, 2, 3) metallic glasses in Ringer’s solution, Journal of Alloys and Compounds, 2019, 815, 152313, DOI: 10.1016/ j.jallcom.2019.152313.
- [10] WANG J., MA Y., GUO S. et al., Effect of Sr on the microstructure and biodegradable behavior of Mg-Zn-Ca-Mn alloys for implant application, Materials and Design, 2018, 153, 308–316, DOI:10.1016/j.matdes.2018.04.062.
- [11] XIE X., WANG X., WANG Y. et al., Ca-Mg-Zn metallic glass as degradable biomaterials developed for potential orthopaedic applications, Bone, 2010, 47 (Suppl. S3), S425–S425, DOI: 10.1016/j.bone.2010.09.249.
- [12] ZBERG B., UGGOWITZER P.J., LOFFLER J.F., Mg-Zn-Ca glasses without clinically observable hydrogen evolution for biodegradable implants, Nat. Mater., 2009, 8 (11), 887–891, DOI: 10.1038/nmat2542.
- [13] ZHANG J., REN L., YANG K., Cytotoxicity of Ti-6al-4V-5Cu Alloy to MC3T3-E1 Cells, Acta Metallurgica Sinica (English Letters), 2020, DOI: 10.1007/s40195-020-01158-1.
- [14] ZHAO Y.Y., ZHAO X., Structural relaxation and its influence on the elastic properties and notch toughness of Mg-Zn-Ca bulk metallic glass, Journal of Alloys and Compounds, 2012, 515, 154–160, DOI: 10.1016/j.jallcom.2011.11.125.
- [15] ZHU M.L., Preparation and properties of biomedical Mg-Zn-Ca amorphous composites, D Xi 'an Technological University, 2020, DOI: 10.27391/d.cnki.gxagu.2019.000180.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62f5a911-9412-48fc-9bea-31d2c7b925a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.