PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unique trace element geochemistry of pyrometamorphic apatite-supergroup minerals : a case study of fluorellestadite from burnt coal (Poland) and shale (France) post-mining waste heaps, with emphasis on boron, germanium, aluminium and titanium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Apatite-type structure is known for its flexibility towards accommodating numerous ions of different crystallographic affinities. Two samples of fluorellestadite from two pyrometamorphic rocks (slags) from burned waste heaps (BWH) from France (LdS) and Poland (RDT) were studied in terms of their trace element composition using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Boron shows an evident, persistent enrichment in both the samples, with average/maximum levels of 497/1040 and 49/106 ppm, respectively. So is true for magnesium (884/16766 and 404/6251 ppm, i.e., respectively) and sodium (512/697 and 249/370 ppm, respectively). Germanium is clearly enriched in the first sample (29/40 ppm) and, to a lesser degree, in the second one (34 ppm on average). The LdS sample is also clearly enriched in Al (888/1238 ppm), K (385/697 ppm), Ti (515/943 ppm), V (172/347 ppm), and Cu (16/1369 ppm). The RDT sample is also rich in As (105/120 ppm) and Sr (1072/6592 ppm). An interesting feature of both samples concerns their REE pattern: Nd is the dominant element of the group, with the respective Nd/ΣLREE and Nd/(Ce+La) values of 0.43 and 0.90; and 0.37 and 0.66. In order from highest to lower average concentrations, aluminium, magnesium, titanium, boron, potassium, and germanium may be essential substituents in the BWH apatites.
Rocznik
Strony
art. no. 7
Opis fizyczny
Bibliogr. 88 poz., fot., rys., tab., wykr.
Twórcy
  • Institute of Geological Sciences, Polish Academy of Sciences (IGS PAS), Twarda 51/55, 00-818 Warszawa, Poland
  • Department of Geological Processes, Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00 Praha 6 – Lysolaje, Czech Republic
autor
  • Institute of Geological Sciences, Polish Academy of Sciences (IGS PAS), Twarda 51/55, 00-818 Warszawa, Poland
Bibliografia
  • 1. Adamiano, A., Sangiorgi, N., Sprio, S., Ruffini, A., Sandri, M., Sanson, A., Gras, P., Grossin, D., Francès, C., Chatzipanagis, K., Bilton, M., Marzec, B., Varesano, A., Meldrum, F., Kröger, R., Tampieri, A., 2017. Biomineraliation of a titanium-modified hydroxyapatite semiconductor on conductive wool fibers. Journal of Materals Chemistry B, 5: 7608-7621; https://doi.org/10.1039/C7TB00211D
  • 2. Azadbakht, Z., Lentz, D.R., McFarlane, C.R.M., 2018. Apatite chemical compositions from Acadian-related granitoids of New Brunswick, Canada: implications for petrogenesis and metallogenesis. Minerals, 8: 598; https://doi.org/10.3390/ min8120598
  • 3. Bačík, P., Uher, P., Kozáková, P., Števko, M., Ozdín, D., Vaculovic, T., 2018. Vanadian and chromian garnet- and epidote-supergroup minerals in metamorphosed Paleozoic black shales from Čierna Lehota, Strážovské vrchy Mts., Slovakia: crystal chemistry and evolution. Mineralogical Magazine, 82: 889-911; https://doi.org/10.1180/minmag.2017.081.068
  • 4. Bech, J., Reverter, F., Tume, P., Sánchez, P., Delgado, R., Suarez, M., Lansac, A., Roca, N., 2010 Trace elements in phosphorites of different provenance. 19th World Congress of Soil Sciences, Soil Solutions for a Changing World, 1-6 August 2010, Brisbane, Australia: 120-122.
  • 5. Belousova, E.A., Walters, S., Griffin, W.L., O'Reilly, S.Y., 2001. Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian Journal of Earth Sciences, 48: 603-619; https://doi.org/10.1046/j.1440-0952. 2001.00879.x
  • 6. Belousova, E.A., Grittin, W.L., O'Reilly, S.Y., Fisher, N.I., 2002. Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76: 45-69; https://doi.org/ 10.1016/S0375-6742(02)00204-2
  • 7. Berry, A.J., Walker, A.M., Hermann, J., O'Neil, H., Foran, G.J., Gale, J.D., 2007. Titanium substitution mechanisms in forsterite. Chemical Geology, 242: 176-186; https://doi.org/ 10.1016/ j.chemgeo.2007.03.010.
  • 8. Bishady, A.M., Farag, N.M., Mira, H.I., El-Sawey, E.-S.H., Negm, S.H., 2019. A contribution to the geochemistry of El-Sibaiya phosphorites, Nile Valley. Nuclear Sciences Scientific Journal, 8: 39-58; https://doi.org/10.21608/nssj.2019.29945
  • 9. Blengini, G.A., Mathieux, F., Mancini, L., Nyberg, M., Viegas, H.M. (eds.); Salminen, J., Garbarino, E., Orveillon, G., Saveryn, H., Mateos Aquilino, V., Llorens González, T., García Polonio, F., Horckmans, L., D'Hugues, P., Balomenos, E., Dino, G., de la Feld, M., Mádai, F., Földessy, J., Mucsi, G., Gombkötő, I., Calleja, I., 2019. Recovery of critical and other raw materials from mining waste and landfills: State of play on existing practices. JCR Science for Policy Report, EUR 29744 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-76-03391-2; https://doi.org/ 10.2760/494020, JRC116131; https://doi.org/10.2760/600775
  • 10. Bostick, W.D., Stevenson, R.J., Harris, L.A., Perry, D., Hall, J.R., Shoemaker, J.L., Jarabek, R.J., Munday, E.B.. 2003. Use of apatite for chemical stabilization of subsurface contaminants. Final Report. U.S. Department of Energy, National Energy Technology Laboratory; https://doi.org/ 10.2172/820754
  • 11. Bowles, J.F.W., Cook, N.J., Sundblad, K., Jonsson, E., Deady, E., Hughes, H.S.R., 2018. Critical-metal mineralogy and ore genesis: contributions from the European Mineralogical Conference held in Rimini, September 2016. Mineralogical Magazine, 82 (S1): S1-S4; https://doi.org/10.1180/minmag.2017.081.110
  • 12. Brigatti, M.F., Caprilli, E., Marchesini, M., 2006. Poppiite, the V3+ end-member of the pumpellyite group: description and crystal structure. American Mineralogist, 91: 584-588; https://doi.org/ 10.2138/am.2006.2033
  • 13. Bromiley, G.D., 2020. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas? Lithos, 384-385: 105900; doi.org/10.1016/j.lithos.2020.105900
  • 14. Broska, I., Krogh Ravna, E.J., Vojtko, P., Janák, M., Konečný, P., Pentrák, M., Bačík, P., Luptáková, J., Kullerud, K., 2014. Oriented inclusion in apatite in a post-UHP fluid-mediated regime (Troms0 Nappe, Norway). European Journal of Mineralogy, 26: 623-634;https://doi.org/ 10.1127/0935-1221/2014/0026-2396
  • 15. Brounce, M., Boyce, J., McCubbin, F.M., Humphreys, J., Reppart, J., Stolper, E., Eiler, J., 2019. The oxidation state of sulfur in lunar apatite. American Mineralogist, 104: 307-312; https://doi.org/ 10.2138/am-2019-6804
  • 16. Brunskill, G.J., Zagorskis, I., Pfitzner, J., 2003. Geochemical mass balance for lithium, boron, and strontium in the Gulf of Papua, Papua New Guinea (project TROPICS). Geochimica et Cosmochimica Acta, 67: 3365-3383; https://doi.org/10.1016/ S0016-7037(02)01410-2.
  • 17. Chakhmouradian, A.R., Reguir, E.P., Zaitsev, A.N., Coueslan, C., Xu, C., Kynický, J., Mumin, H., Yang, P., 2017. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos, 274-275: 188-213; https://doi.org/10.1016/j.lithos.2016.12.037
  • 18. Ciesielczuk, J., Kruszewski, Ł., Majka, J., 2015. Comparative mineralogical study of thermally-altered coal-dump waste, natural rocks and the products of laboratory heating experiments. International Journal of Coal Geology, 139: 114-141; https://doi. org/10.1016/j.coal.2014.08.013
  • 19. Chopin, C., Goffé, B., Ungaretti, L., Oberti, R., 2003. Magnesiostaurolite and zincostaurolite: mineral description with a petrogenetic and crystal-chemical update. European Journal of Mineralogy, 15: 167-176; https://doi.org/10.1127/0935-1221/2003/0001-0167
  • 20. Dong, P., 2009. Halogen-element (F, Cl, and Br) behaviour in apatites, scapolite, and sodalite: an experimental investigation with field applications. Ph.D. thesis, College of Graduate Studies and Research, Department of Geological Sciences, University of Saskatchewan, Saskatoon.
  • 21. Duan, D.-F., Jiang, S.-Y., 2018. Major, trace and rare earth elements of apatite and zircon U-Pb ages of ore-associated and barren granitoids from the Edong ore district, South China. Data in Brief, 20: 1587-1601; https://doi.org/10.1016/j.dib.2018.08.154.
  • 22. Đordević, T., Šutović, S., Stojanović, J., Karanović, L., 2008. Sr, Ba and Cd arsenates with the apatite-type structure. Acta Crystallographica C, 64: i82-i86; https://doi.org/10.1107/S0108270108023457.
  • 23. European Commission, 2017. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 list of Criti cal Raw Materials for the EU. Brussels, 13.9.2017, COM(2017) 490 final; https://eur-lex.europa.eu/
  • 24. Fleet, M.E., Liu, X., 2007. Coupled substitution of type A and B carbonate in sodium-bearing apatite. Biomaterials, 28: 916-926; https://doi.org/10.1016/j.biomaterials.2006.11.003
  • 25. Fleet, M.E., Liu, X., 2008. Accommodation of the carbonate ion in fluorapatite synthesized at high pressure. American Mineralogist, 93: 1460-1469; https://doi.org/10/2138/am.2008.2786
  • 26. Fleet, M.E., Pan, Y., 1995. Site preference of rare earth elements in fluorapatite. American Mineralogist, 80: 329-335; https://doi. org/10.2138/am-1995-3-414
  • 27. Glätze, M., Pitscheider, A., Oeckler, O., Wurst, K., Huppertz, H., 2018. A high-pressure praseodymium fluoride borate linking multiple structural features of apatite-type compounds. Chemistry - A European Journal, 25: 1767-1772; https://doi.org/10. 1002/chem.201805092.
  • 28. Gross, S., 1977. The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel, 70: 1-80.
  • 29. Guo, Q., Liao, L., Xia, Z., Liu, H., 2014. Composition determination and cathodoluminescence of natural apatite from different phosphate deposits in Northern China. JOM, 66: 992-997; https:// doi.org/10.1007/s11837-014-0955-6.
  • 30. Hammer, O., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4: 1-9.
  • 31. Hughes, J.M., Rakovan, J., 2015. Structurally robust, chemically di verse: apatite and apatite supergroup minerals. Elements, 11: 165-170; https://doi.org/10.2113/gselements.11.3.165
  • 32. Ito, A., Aoki, H., Akao, M., Miura, N., Otsuka, R., Tsutsumi, S., 1988. Structure of borate groups in boron-contain ing apatite. Journal of the Ceramic Society of Japan, 96: 707-709; https://doi.org/10.2109/jcersj.96.709
  • 33. Jenkins, H.D.B., Thakur, K.P., 1979. Reappraisal of thermochemical radii for complexions. Journal of Chemical Education, 56: 576; https://www.wiredchemist.com/chemistry/data/thermochemical-radii-anions; https://doi.org/10.1021/ ed056p576
  • 34. Juroszek, R., Krüger, B., Galuskina, I., Krüger, H., Vapnik, Y., Galuskin, E., 2020. Siwaqaite, Ca6Al2(CrO4)3(OH)i2^26H2O, a new mineral of the ettringite group from the pyrometamorphic Daba-Siwaqa complex, Jordan. American Mineralogist, 105: 409-421; https://doi.org/10.2138/am-2020-7208
  • 35. Ketris, M.P., Yudovich, Ya.E., 2009. Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78: 135-148; https://doi.org/10.1016/j.coal.2009.01.002
  • 36. Kharlamova, T., Vodyankina, O., Matveev, A., Stathopoulos, V., Ishchenko, A., Khabibulin, D., Sadykov, V., 2015. The structure and texture genesis of apatite-type lanthanum silicates during their synthesis by co-precipitation. Ceramics Intermational, 41: 13393-13408; https://doi.org/10.1016/j.ceramint.2015.07.128
  • 37. Kimura, J.-I., Danhara, T., Iwano, H., 2000. Apreliminary report on trace element determinations in zircon and apatite crystals using Excimer Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (ExLA-ICPMS). Fission Track News Letter, 13: 11-20.
  • 38. Kruszewski, Ł., 2008. Apatite-ellestadite solid solution and associated minerals of metacarbonate slags from burning coal dump in Rydułtowy (Upper Silesia). Mineralogia - Special Papers, 32: 100.
  • 39. Kruszewski, Ł., 2018. Geochemical Behavior of Trace Elements in the Upper and Lower Silesian Basin Coal-Fire Gob Piles of Poland. In: Coal and Peat Fires: A Global Perspective, 5 - “Case Studies - Advances in Field and Laboratory Research” (ed. G.B. Stracher), Chapter 19; ISBN 978-0-12-849885-9: 409-449; https://doi.org/10/1016/B978-0-12-849885-9.00013-5.
  • 40. Kruszewski, Ł., Gatei, P., Thiéry, V., Moszumańska, I., Kusy, D., 2018. Crystallochemical Behavior of Slag Minerals and the Occurrence of Potentially New Mineral Species from Lapanouse-de-Sévérac, France. In: Coal and Peat Fires: A Global Perspective, 5 - “Case Studies - Advances in Field and Laboratory Research” (ed. G.B. Stracher), Chapter 19; ISBN 978-0-12-849885-9: 241-300; https://doi.org/10/1016/B978-0-12-849885-9.00013-5
  • 41. La Cruz, N.L., Ovalle, J.T., Simon, A.C., Konecke, B.A., Barra, F., Reich, M., Leisen, M., Childress, T.M., 2020. The geochemistry of magnetite and apatite from the El Laco iron oxide-apatite deposit, Chile: Implications for ore genesis. Economic Geology, 115: 1461-1491; https://doi.org/10.5382/econgeo.4753
  • 42. Lapidus, A.L., Khudyakov, D.S., Beilina, N.Yu., Trukhina, M.A., Kozlov, A.M., Zhagfarov, F.G., 2022. Solid fossil fuels as a source of trace elements. Solid Fuel Chemistry, 56: 1-14; https://doi.org/10.3103/S0361521922010037
  • 43. Liao, T., Sasaki, T., Sun, Z.. 2013. The oxygen migration in the apatite-type lanthanum silicate with the cation substitution. Physical Chemistry Chemical Physics, 15: 17552-17559; https:// doi.org/10.1039/C3CP52245H
  • 44. Luo, Y., Hughes, J.M., Rakovan, J., Pan, Y., 2009. Site preference of U and Th in Cl, F, and Sr apatites. American Mineralogist, 94: 345-351; https://doi.org/10.2138/am.2009.3026
  • 45. Machiels, L., Perumal, P., 2022. (Re)mining Extractive Waste: a new business? Book of abstracts. Romana Origin, ISBN 9789464594966.
  • 46. Mao, M., Rukhov, A.S., Rowins, S.M., Spence, J., Coogan, L.A., 2016. Apatite trace element composition: Arobust new method for mineral exploration. Economic Geology, 111: 1187-1222; https://doi.org/10.2113/econgeo.111.5.1187
  • 47. Mason, B., Graham, A.L., 1970. Minor and trace elements in mete- oritic minerals. Smithsonian Contributions to the Earth Sciences, 3: 1-17; https://doi.org/10.1016/0016-7037(73)90081-1
  • 48. Mazza, D., Tribaudino, M., Delmastro, A., Lebech, B., 2000. Synthesis and neutron diffraction study of La5Si2BO13, an analog of the apatite mineral. Journal of Solid State Chemistry, 155: 389-393.; https://doi.org/10.1006/jssc.2000.8929
  • 49. Mercer, C.N., 2019. Apatite trace element geochemistry and cathodoluminescent textures - A comparison between regional magmatism and the Pea Ridge IOAREE and Boss IOCG deposits, southeastern Missouri iron metallogenic province, USA. Ore Geology Reviews, 116: 103129; https://doi.org/10.1016/ j.oregeorev.2019.103129
  • 50. Moore, R.C., Holt, K., Zhao, H., Hasan, A., Awwad, N., Gasser, M., Sanchez, C., 2009. Sorption of Np(V) by synthetic hydroxyapatite. Radiochimica Acta, 91: 721-727; https://doi.org/10.1524/ract.91.12.721.23417
  • 51. Pan, Y., Fleet, M.E., 2002. Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry, 48: 13-49; https://doi.org/ 10.2138/rmg.2002.48.2
  • 52. Pan, L.-C., Hu, R.-Z., Oyebamiji, A., Wu, H.-Y., Li, J.-W., Li, J.-X., 2021. Contrasting magma compositions between Cu and Au mineralized granodiorite intrusions in the Tongling ore district in South China using apatite chemical composition and Sr-Nd isotopes. American Mineralogist (Revision 3); https://doi.org/ 10.2138/am-2021-7497
  • 53. Parzentny, H., 2020. spatial macroscale variability of the role of mineral matter in concentrating some trace elements in bituminous coal in a coal Basin - A case study from the Upper Silesian Coal Basin in Poland. Minerals, 10: 422; https://doi.org/ 10.3390/min10050422
  • 54. Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J., White, T.J., 2010. Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22: 163-179; https://doi.org/10.1127/0935-1221/2010/0022-2022
  • 55. Pauling, L., 1961. The Nature of Chemical Bond. Application of Results Obtained. Journal of the American Chemical Society. Ithaca, Cornell University Press; http://abulafia.mt.ic.ac.uk/ shannon/radius.php; https://doi.org/
  • 56. Pluta, I., Marcol, A., Bąk, W., 2000. Siarczany w skałach i wodach kopalni “Marcel” w świetle badań izotopowych (in Polish). Zeszyty Naukowe Politechniki Śląskiej - Seria Górnictwo, 247 (1480): 397-405; https://doi.org/10.5772/62213
  • 57. Ptáček, P., 2016. Substituents and Dopants in the Structure of Apatite. In: Apatites and Their Synthetic Analogues, Synthesis, Structure, Properties and Applications (ed. P. Ptáček), Chapter 6: 289-334; doi.:10.5772/62213
  • 58. Reifenstein, A.P., Kahraman, H., Coin, C.D.A., Calos, N.J., Miller, G., Uwins, P., 1999. Behaviour of selected minerals in an improved ash fusion test: quartz, potassium feldspar, sodium feldspar, kaolinite, illite, calcite, dolomite, siderite, pyrite and apatite. Fuel, 78: 1449-1461; https://doi.org/10.1016/S0016- 2361(99)00065-4
  • 59. Rigali, M.J., Brady, P.V., Moore, R.C., 2016. Radionuclide removal by apatite. American Mineralogist, 101: 2611-2619; https://doi.org/10.2138/am-2016-5769
  • 60. Rocha, J., Brandäo, P., Lin, Z., Kharlamov, A., Anderson, M.W., 1996. Novel microporous titanium-niobium-silicates with the structure of nenadkevichite. Chemical Communications, 5: 669-670; https://doi.org/10.1039/CC9960000669
  • 61. Romero, M., Padilla, I., Contreras, M., López-Delgado, A., 2021. Mullite-based ceramics from mining waste: a review. Minerals, 11: 332; https://doi.org/10.3390/min11030332
  • 62. Sader, M.S., Lewis, K., Soares, G.A., LeGeros, R.Z., 2013. Simultaneous incorporation of magnesium and carbonate in apatite: effect on physico-chemical properties. Materials Research, 16: 779-784; https://doi.org/10.1590/S1516-14392013005000046
  • 63. Sahasrabudhe, G.S., Krizan, J.W., Bergman, S.K., Cava, R.J., Schwartz, J., 2016. Million-fold increase of the conductivity in TiO2 rutile through 3% niobium incorporation. Chemical Mineralogy, 28: 4; https://doi.org/10.1021/acs.chemmater.6b02031
  • 64. Schleicher, H., 2019. In-situ determination of trace element and REE partitioning in a natural apatite-carbonatite melt system using Synchrotron XRF Microprobe Analysis. Journal of the Geological Society of India, 93: 305-312; https://doi.org/ 10.1007/s12594-019-1178-9
  • 65. Seredin, V.V., Finkelman, R.B., 2008. Metalliferous coals: a review of the main genetic and geochemical types. International Journal of Coal Geology, 76: 253-289; https://doi.org/10.1016/j.coal.2008.07.016
  • 66. Serre, C.M., Papipllard, M., Chavassieux, P., Voegel, J.C., Boivin, G., 1998. Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. Journal of Biomedical Materials Research, 42: 626-633; https://doi.org/10.1002/(sici)1097-4636 (19981214)42:4<626::aid-jbm20>3.0.co;2-s.
  • 67. Sha, L.-K., Chappell, B.W., 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63: 3861-3881; https://doi.org/10.1016/S0016-7037(99)00210-0
  • 68. Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 32: 751-767; http://abulafia.mt.ic.ac. uk/shannon/radius.php; https://doi.org/10.1107/S05677394760 01551
  • 69. Simoes, M.C., Hughes, K.J., Ingham, D.B., Ma, L., Pourkashanian, M., 2017. Estimation of the Thermochemical Radii and Ionic Volumes of Complex Ions. Inorganic Chemistry, 56: 7566-7573; https://doi.org/10.1021/acs.inorgchem.7b01205
  • 70. Simpson, D.R., 1968. Substitutions in apatite: I. Potassium-bearing apatite. The American Mineralogist, 53: 432-444.
  • 71. Sokolova, E.V., Pautov, L.A., 1995. Crystal structure of dusmatovite. Soviet Physics - Doklady, 40: 503-506.
  • 72. Ternane, R., Cohen-Adad, M.Th., Panczer, G., Goutaudier, C., Kbir-Ariguib, N., Trabelsi-Ayedi, M., Florian, P., Massiot, D., 2002. Introduction of boron in hydroxyapatite: synthesis and structural characterization. Journal of Alloys and Compounds, 333: 62-71; https://doi.org/10.1016/S0925-8388(01)01558-4
  • 73. Terra, J., Dourado, E.R., Eon, J.-G., Ellis, D.E., Gonza lez, G., Malta Rossi, A., 2009. The structure of strontium-doped hydroxyapatite: an experimental and theoretical study. Physical Chemistry Chemical Physics, 11: 568-577; https://doi.org/ 10.1039/b802841a
  • 74. Tollari, N., Barnes, S.-J., Cox, R.A., Nabil, H., 2008. Trace element concentrations in apatites from the Sept-Îles Intrusive Suite, Canada - Implications for the genesis of nelsonites. Chemical Geology, 252: 180-190; https://doi.org/10.1016/j.chemgeo.2008.02.016
  • 75. Tunheng, A., Hirata, T., 2004. Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry. Journal of Analytical Atomic Spectroscopy, 19: 932-934; https://doi.org/10.1039/B402493A
  • 76. van Achterbergh E., Ryan, C.G., Jackson, S.E., Griffin, W.L., 2001. Data reduction software for LA-ICP-MS. In: Sylvester PJ (ed) Laser ablation-ICPMS in the earth sciences: principles and applications. Mineralogical Association of Canada, Ottawa, Ontario, Canada: 239-243; https://doi.org/10.1180/002646102 753705408
  • 77. Villiars, P., Cenzual, K., Gladyshevskii, R., 2015. Handbook of Inorganic Substances. De Gruyter, Berlin, Germany; https://doi.org/10.1107/S2053229616010172
  • 78. Vrancken, K., Delgado, R., 2016. EIT Raw Materials needs and opportunities for Copernicus products and services; https://www.copernicus.eu (Retrieved 10.11.2022)
  • 79. Wang, J., Lian, J., Gao, F., 2015. Radionuclide incorporation and long term performance of apatite waste forms 11-3105. Project, Fuel Cycles, U.S. Department of Energy, RCS Advances, 3, 15178; https://doi.org/10.2172/1248954
  • 80. Wang, T.J., ZhiLi, D., 2003. Structural derivation and crystal chemistry of apatites. Acta Crystallographica B, 59: 1-16; https://doi.org/10.1107/s0108768102019894
  • 81. Warner, N.R., Darrah, T.H., Jackson, R.B., Millot, R., Kloppmann, W., Vengosh, A., 2014. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations. Environmental Science and Technology, 48: 12552-12560; https://doi.org/10.1021/es5032135
  • 82. Wiesmann, H.-P., Plate, U., Zierold, K., Höhling, H.J., 1998. Potassium is involved in apatite biomineralization. Journal of Dental Restoration, 77: 1654-1657; https://doi.org/10.1177/0022 0345980770081401
  • 83. Xiqiang, L., Hui, Z., Yong, T., Yunlong, L., 2020. REE geochemical characteristics of apatite: implications for ore genesis of the Zhijin Phosphorite. Minerals, 10: 1012; https://doi.org/10.3390/ min10111012
  • 84. Xu, B., Kou, G., Etschmann, B., Liu, D., Brugger, J., 2020. Spectroscopic, EMPA, Micro-XRF and Micro-XANES analyses of sulphur concentration and oxidation state of natural apatite crystals. Crystals, 10: 1032; https://doi.org/10.3390/cryst10111032
  • 85. Yakymchuk, C., 2017. Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth. Lithos, 274-275: 412-426; https://doi.org/ 10.1016/j.lithos.2017.01.009
  • 86. Yokota, T., Honda, M., Aizawa, M., 2017. Fabrication of potassium-substituted hydroxyapatite ceramics via ultrasonic spray-pyrolysis route. Phosphorus Research Bulletin, 33: 35-40; https://doi.org/10.3363/prb.33.35
  • 87. Zhang, Y., Tan, H., Cong, P., Rao, W., Ta, W., Lu, S., Shi, D., 2022. Boron and lithium isotopic constraints on their origin, evolution, and enrichment processes in a river - groundwater - salt lake system in the Qaidam Basin, northeastern Tibetan Plateau. Ore Geology Reviews, 149: 105110; https://doi.org/10.1016/j.ore georev.2022.105110.
  • 88. Zhang, P., Li, W., White, N.C., Zhang, L., Qiao, X., Yao, Z., 2020. Geochemical and isotopic study of metasomatic apatite: Implications for gold mineralization in Xindigou, northern China. Ore Geology Reviews, 127: 103853, https://doi.org/10.1016/j.ore georev.2020.103853
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62ef9057-6383-4e5f-84ea-755cf1e5821e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.