PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reducing aeration and cavitation effect in shock absorbers using uid-structure interaction simulation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a fluid-structure interaction simulation applicable for evaluating and optimizing hydraulic valve designs. A special emphasis is placed on shim stack valve commonly used in automotive and railway shock absorbers. For simplicity, the problem was effectively reduced to a two-dimensional (2D) problem. This was accomplished by introducing section-lines along which the pressure profile was computed to find and evaluate the global minimum. The global minimum was then treated as the design ranking measure. This ranking function provided a means to choose an optimal design from a set of available design variants. In the presented results, the ranking is problem-specific as it identifies and localizes low pressure zones that are the root causes of both aeration and cavitation effects. The damping force performance was experimentally evaluated for both the baseline and optimized valve design using a shock absorber level test on a servo-hydraulic test rig.
Rocznik
Strony
171--189
Opis fizyczny
Bibliogr. 33 poz., il., tab., wykr.
Twórcy
autor
  • AGH University of Science and TechnologyDepartment of Robotics and Mechatronicsal. Mickiewicza 30, 30-059 Cracow, Poland
autor
  • Silesian University of TechnologyInstitute of Theoretical and Applied MechanicsKonarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • [1] S.W. Duym, R. Stiens, G.V. Baron, K.G. Reybrouck. Physical modeling of the hysteretic behaviour of automotive shock absorbers. SAE Technical Paper 970101, 1997.
  • [2] J. Dixon. The Shock Absorber Handbook. John Wiley & Sons, 2008.
  • [3] S.L. Ceccio, C.E. Brennen. Observations of the dynamics and acoustics of travelling bubble cavitation. Journal of Fluid Mechanics , 233: 633–660, 1991.
  • [4] C.E. Brennen. Cavitation and Bubble Dynamics . Cambridge University Press, 2013.
  • [5] M. Alonso, A. Comas. Modelling a twin tube cavitating shock absorber. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220: 1031–1040, 2006.
  • [6] D. Jakubowski, J. Gnilka, G. Wszołek, P. Czop. Optimization of a hydraulic damper performance with the use of fluid-structure simulation. Advanced Materials Research, 452–453: 1356–1360, 2012.
  • [7] D. Sławik, P. Czop, A. Król, G. Wszołek. Optimization of hydraulic dampers with the use of Design For Six Sigma methodology. Journal of Achievements in Materials and Manufacturing Engineering, 43(2): 676–683, 2010.
  • [8] P. Czop, D. Sławik, T. Wlodarczyk, M. Wojtyczka, G. Wszołek. Six Sigma methodology applied to minimizing damping lag in hydraulic shock absorbers. Journal of Achievements in Materials and Manufacturing Engineering, 49: 243–250, 2011.
  • [9] C.O. Iyer, W.-J. Yang. Analysis on liquid-vapour bubbly-flow systems in reciprocating motion. Journal of Fluids Engineering, 121(1): 185–190, 1999.
  • [10] F. Luo, X.L. Zhang. A review of aeration and cavitation phenomena in the hydraulic shock absorber. Advances in mechatronics, robotics and automation II. Applied Mechanics and Materials, 536–537: 1369–1373, 2014.
  • [11] M. Borghi, M. Milani, R. Paoluzzi. Transient flow force estimation on the pilot stage of a hydraulic valve. Proceedings of the ASME-IMECE FPST-Fluid Power Systems & Tech., 5: 157–162, 1998.
  • [12] M. Borghi, G. Cantore, M. Milani, R. Paoluzzi. Analysis of hydraulic components using computational fluid dynamics models. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 212(7): 619–629, 1998.
  • [13] D.N. Johnston, K.A. Edge, N.D. Vaughan. Experimental investigation of flow and force characteristics of hydraulic poppet and disc valves. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 205(3): 161–171, 1991.
  • [14] O. Beyer, B. Becher, M. Stüwing, G. Zimmermann. Measurement and simulation of the hydraulic behavior of the piston valve in a monotube shock absorber. Proceedings of the 7th International Conference ATA, Italy, 2002.
  • [15] L. Liang, X. Zhang, M. Peng, G. Qin. Non-linear characteristic simulation of hydraulic shock absorbers considering the contact of valves. Proceedings of the 2nd International Conference on Computer Application and System Modeling, 2012.
  • [16] P. Czop, D. Slawik, P. Sliwa. Static validation of a model of a disc valve system used in shock absorbers. International Journal of Vehicle Design , 53(4): 317–342, 2010.
  • [17] F. Herr, T. Mallin, J. Lane, S. Roth. A shock absorber model using CFD analysis and Easy5, SAE Technical Paper 1999-01-1322, 1999.
  • [18] F.P. Martins, C. Siqueira, N. Spogis. Development and validation of a CFD model to investigate the oil flow in a shock absorber. SAE Technical Paper 2005-01-4030, 2005.
  • [19] B. Koren, P.F.M. Michielsen, J.W. Kars, P. Wesseling. A computational method for high-frequency oleodynamics, application to hydraulic-shock-absorber designs. Computational Fluid Dynamics’96, 725–731, 1996.
  • [20] M. Shams, R. Ebrahimi, A. Raoufi, B.J. Jafari. CFD-FEA analysis of hydraulic shock absorber valve behavior. International Journal of Automotive Technology, 8(5): 615–622, 2007.
  • [21] Z. Yu, N. Zhang, S. Liu. Simulation analysis of dynamic nonlinear characteristics of vehicle shock absorber based on fluid-structure interaction. Journal of Jilin University (Engineering and Technology Edition), 45(1): 16–21, 2015.
  • [22] F.G. Guzzomi. Investigation of Damper Valve Fluid-Structure Interaction through the Application of Experimental Visualisation Techniques , PhD Thesis. The University of Western Australia, 2012.
  • [23] M.C. Potter, D.C. Wiggert, B.H. Ramadan. Mechanics of Fluids . Nelson Education, 2016.
  • [24] E.B. Wylie, V.L. Streeter, L. Suo. Fluid Transients in Systems. Vol. 1. Prentice Hall, Englewood Cliffs, NJ, 1993.
  • [25] T. Włodarczyk, P. Czop, D. Sławik, G. Wszołek. Automatic shape identification by data-driven algorithms with applications to design optimizing in hydraulics. Journal of Transdisciplinary Systems Science, 16(1): 35–43, 2012.
  • [26] H. Lomax, T.H. Pulliam, D.W. Zingg. Fundamentals of Computational Fluid Dynamics. Springer Science & Business Media, 2013.
  • [27] A. Narayanan, A. Einstein. Morphing and parametrization technologies for CFD applications. SAE Technical Paper 2007-01-0597, 2007.
  • [28] MSC Software Corporation. MSC Nastran User’s Manual . Santa Ana, CA, 2000.
  • [29] W. Borutzky, B. Barnard, J. Thoma. An orifice flow model for laminar and turbulent conditions. Simulation Modelling Practice and Theory, 10: 141–152, 2002.
  • [30] M.S. Talbott, J. Starkey. An experimentally validated physical model of a high-performance mono-tube damper. SAE Conference Proceedings, pp. 505–522, 2002.
  • [31] F. Guzzomi, P. O’Neill, A. Tavner. Investigation of damper valve dynamics using parametric numerical methods. 16th Australasian Fluid Mechanics Conference (AFMC), pp. 1123–1130, 2007.
  • [32] B. Yalçin. Effect of porosity on the mechanical properties and wear performance of 2% copper reinforced sintered steel used in shock absorber piston production. Journal of Materials Science & Technology, 25(5): 577–582, 2009.
  • [33] F. Guzzomi, P. O’Neill, A. Tavner. Damper valve study using particle image velocimetry. 8th International Symposium on Particle Image Velocimetry – PIV09, pp. 288–291, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62ee03e8-02ef-42c4-8430-63200a309974
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.