PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electro-hydrodynamic convection in a rotating dielectric micropolar fluid layer

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal convection of a rotating dielectric micropolar fluid layer under the action of an electric field and temperature gradient has been investigated. The dispersion relation has been derived using normal mode analysis. The effects of the electric Rayleigh number, micropolar viscosity, Taylor number and Prandtl number on stability and over stability criteria are discussed. It is found that rotation postpones the instability in the fluid layer, while the Prandtl number and rotation both have a stabilizing effect. It is also observed that the micropolar fluid additives have a stabilizing effect, whereas the electric field has a destabilizing effect on the onset of convection stability.
Rocznik
Strony
106--124
Opis fizyczny
Bibliogr. 28 poz., wykr.
Twórcy
autor
  • I.K.G.P.T.U Deptt. of Applied Sciences, CEC Landran Jalandhar, Punjab, INDIA
autor
  • I.K.G.P.T.U, Jalandhar, Punjab, INDIA
Bibliografia
  • [1] Landau L.D. and Lifshitz E.M. (1960): Electro-Hydrodynamics of Continuous Media. Pergamon Press Oxford.
  • [2] Roberts P.H. (1969): Electrohydrodynamics convection. Quart. J. Mech. Appl. Math., vol.22, pp.211-220.
  • [3] Melcher J.R. and Taylor G.L. (1969): Electrohydrodynamics:a review of role of interfacial shear stresses. Annu. Rey. Fluid Mech., vol.1, pp.111-146.
  • [4] Gelmont B.L. and Loffe I.V. (1968): The electric field influence on the convection in the liquid dielectric. Phys. Lett. 26 (A), pp.253-254.
  • [5] Gross M.J. and Porter J.E. (1966): Electrically induced convection in dielectric liquids. Nature, vol.212, pp.1343-1345.
  • [6] Takashima M. and Aldrige K.D. (1976): The stability of horizontal layer of dielectric fluid under the simultaneous action of vertical DC electric field and a vertical temperature gradient. Quart. J. Mech. Appl. Math., vol.29, No.1, pp.71-87.
  • [7] Chandrasekhar S. (1981): Hydrodynamics and Hydromagnetic Stability. Dover Publication Inc.
  • [8] Eringen A.C. (1966): Theory of micropolar fluids. Int. J. Engng. Sci., vol.16.
  • [9] Eringen A.C. (1972): Theory of thermal micropolar fluids. J. Math. Anal. Appl., vol.38, No.2, pp.480-496.
  • [10] Perez-Gracia C. and Rubi J.M. (1982): On the possibility of overstable motions of micropolar fluids heated from below. Int. J. Engng. Sci., vol.20, pp.873-878.
  • [11] Perez-Garcia C., Rubi J.M. and Casas-Vazquez J. (1981): On the stability of micropolar fluids. J. Non-Equilib., Thermodyn, vol.6, pp.65-78.
  • [12] Ahmadi G. (1976): Stability of micropolar layer heated from below. Int. J. Engng. Sci., vol.14, pp.81-89.
  • [13] Datta B. and Sastry V.U.K. (1976): Thermal instability of horizontal layer of micropolar fluid heated from below. Int. J. Engng. Sci., vol.14, No.7, pp.631-637.
  • [14] Rama Rao K.V. (1979): Numerical solution of the thermal instability in micropolar fluid layer between rigid boundaries. Acta Mech., vol.32, pp.79-88.
  • [15] Rama Rao K.V. (1980): Thermal instability in a micropolar fluid layer subjected to a magnetic field. Int. J. Engng. Sci., vol.18, pp.741-750.
  • [16] Sharma R.C. and Gupta U. (1995): Thermal convection in micropolar fluids in porous medium. Int. J. Engng. Sci., vol.33, pp.1887-1892.
  • [17] Shrama R.C. and Kumar P. (1994): Effect of rotation on thermal convection in micropolar fluids. Int. J. Engng. Sci., vol.32, pp.545-551.
  • [18] Sharma R.C. and Kumar P. (1998): Effect of rotation on the thermal convection in micropolar fluids in porous media. Ind. J. Pure Appl. Math., vol.29, No.1, pp.95-104.
  • [19] Rana G.C. Chand R. and Yadav D. (2015): The onset of electrohydrodynamics instability of an elastico-viscous Walters’(Model B’) dielectric fluid layer. FME Trans., vol.43, pp.154-160.
  • [20] Sharma V. and Gupta S. (2008): Thermal convection of micropolar fluid in the presence of suspended particles in rotation. Arch. Mech., vol.60, No.4, pp.403-419.
  • [21] Rani N. and Tomar S.K. (2010): Thermal convection problem of micropolar fluid subjected to hall current. Appl. Math. Model., vol.34, No.2, pp.508-519.
  • [22] Ezzat M.A. and Othman M.I.A. (2000): Thermal instability in a rotating micropolar fluid layer subject to an electric field. Int. J. Engng. Sci., vol.38, No.16, pp.1851-1867.
  • [23] Rani N. and Tomar S.K. (2015): Electro-hydrodynamics convection in dielectric micropolar fluid layer. J. Electrostatics, vol.78, pp.60-67.
  • [24] Qin Y. and Kaloni P.N. (1992): A thermal instability problem in rotating micropolar fluid. Int. J. Engng. Sci., vol.30, pp.1117-1126.
  • [25] Sharma R.C. and Kumar P. (1997): On micropolar fluids heated from below in hydromagnetics in porous medium. Czec. J. Phys., vol.47, No.6, pp.637-647.
  • [26] Othman M.I.A. and Zaki S.A. (2004): Thermal relaxation effect on magnetohydrodynamics instability in a roataing micropolar fluid layer heated from below. Acta Mechanica, vol.170, pp.187-197.
  • [27] Shivakumra I.S., Akkanagamma M. and Chiu-On-Ng (2013): Electrohydrodynamics instability of a rotating couple stress dielectric fluid layer. Int. J. Heat. Mass Trans., vol.62, pp.761-771.
  • [28] Takashima M. (1976): The effect of rotation on electrohydrodynamics instability. Canadian J. Physics, vol.54, No.3, pp.342-347.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62e7f2d6-f8ae-4075-8f8c-4452811f854f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.