PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The evaluation of the current state of EHF-sensors quality in the technical systems and its improvement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article the function and the scale for the entropy evaluation of the current state of extremely high frequency (EHF-) sensors quality in the various technical systems which fits the requirements of universality and maximal independency from the human factor are offered. One may see such EHF-sensors for the analysis of the quick transformations of the biological liquids properties. It’s high lighted that the available methods of the determination of technical systems’ quality have essential flaws which consist in both subjectivism because the dominant role in the evaluation belongs to experts and legitimacy of providing them properties of universality which was proved by nobody. The scheme of EHF-sensor is analyzed for which one may create an analytical model. The problem of the fields’ determination at the working region of such sensor is discussed. The presented scheme is possible to use for the mathematical model and just for that part of the problem which is devoted to the transformation of the properties of the object. The results of calculation of components of electromagnetic field at the working space of EHF-sensor are discussed. One may estimate the sizes of this space. The offered function of the quality evaluation, the parameter of which is the quantity of own information of the explored sensor, provides the declared universality approach according to the principles of the information theory. The conformity to all requirements for the functions of the evaluation of the quality: continuity, monotonic and smoothness over the whole range of definition regardless of the probability distribution function, which is measured by the random value EHF-sensor was proved. The proposed scale of the entropy evaluation of the quality fits to standard settings of the diagnostic of the technical systems and has three sub ranges which determine the state of the EHF-sensors: good state, up state, and down state. Unlike the existing psychophysical scales the offered scale has dynamic range of the evaluation so the limits of the sub ranges will automatically change depending on the regulatory and technical requirements for the state of the explored EHF-sensor. Such approach provides adaptation of the scale to specific requirements which gives a chance to evaluate the qualitative state of the object more reliably. The results of modeling of the qualitative state of the sensor are given. The possible practical application of the offered function and scale is usage in the systems of monitoring and diagnostic for determination of the current qualitative state of the explored technical system, as well.
Rocznik
Strony
26--40
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
  • National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
autor
  • National Aviation University, Kyiv, Ukraine
  • Kyiv National University of Construction and Architecture, Kyiv, Ukraine
  • Kyiv National University of Construction and Architecture, Kyiv, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
autor
  • National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
Bibliografia
  • [1.] Shhegoleva T.Ju. Gidratnoe okruzhenie i struktura makromolekul // Uspehi sovremennoj biologii. 1996. T. 116. C. 700-714.
  • [2.] Shhegoleva T.Ju. Issledovanie biologicheskih objektov v millimetrovom diapazone radiovoln. K.: Naukova dumka, 1996. 182s.
  • [3.] Panchenko A.Yu., Slipchenko N.I., Borodkina A.N. On the development of a practical technique of theoretical calibration of resonant sensors for near-field microwave diagnostics // Telecommunication and Radio Engineering. 2014. V. 73, No. 15. P. 1397-1407.
  • [4.] Hyde M.W., Havrilla M.J. A broadband, nondestructive microwave sensor for characterizing magnetic sheet materials // IEEE Sensors J. 2016. V. 16, No. 12. P. 4740-4748.
  • [5.] Kempin M., Ghasr M.M., Case J., Zoughi R. Modified waveguide range for evaluation of stratified composites // IEEE Trans. Instrum. Meas. 2014. V. 63, No. 6. P. 1524-1534.
  • [6.] Kaatze U. Techniques for measuring the microwave dielectric properties of materials // Metrologia. 2012. Vol. 47, No. 2. P. S91-S113.
  • [7.] Hyde M.W., Havrilla M.J., Bogle A.E. Nondestructive Determination of the Permittivity Tensor of a Uniaxial material Using a Two-Port Clamped Coaxial Probe // IEEE Trans. Microwave Theory and Technique. 2016. Vol. 64, No. 1. P. 239-246.
  • [8.] Cenanovic A., Schramm M., Schmidt I. Measurement setup for non-destructive complex permittivity determination of solid materials using two coupled coaxial probes // IEEE MTT-S Int. Microw. Symp. Dig. 2011. P. 1-4.
  • [9.] Hyde M.W. et al. Nondestructive electromagnetic material characterization using a dual waveguide probe: A full wave solution // Radio Science. 2009. Vol. 44, No. 3. P. 10-14.
  • [10.] Alanen E., Lahtinen T., Nuutinen J. Variational Formulation of Open-Ended Coaxial Line in Contact with Layered Biological Medium // IEEE Transactions on biomedical engineering. 1998. Vol. 45, No. 10. P. 1241-1247.
  • [11.] Huang R., Zhang D. Analysis of open-ended coaxial probes by using a two-dimensional Unite-difference frequency-domain method // IEEE Trans. Instrum. Meas. 2008. Vol. 57, No. 5. P. 931-939.
  • [12.] Maftooli H., Karami H.R., Sadeghi S.H.H., Moini R. Output signal prediction of an open-ended coaxial probe when scanning arbitrary-shape surface cracksin metals // IEEE Trans. Instrum. Meas. 2012. Vol. 61, No. 9. P. 2384-2391.
  • [13.] Poumaropoulos C.L., Misra D. A Study on the Coaxial Aperture Electromagnetic Sensor and Its Application in Material Characterization // IEEE Transaction on instrumentation and measurement. 1994. Vol. 43, No. 2. P. 111- 114.
  • [14.] Blackham D.V., Pollard R.D. An Improved Technique for Permittivity Measurements Using a Coaxial Probe // IEEE Transaction on Instrumentation and Measurement. 1997. Vol. 46, No. 5. P. 1093-1099.
  • [15.] Gregory A.P., Clarke R.N. Dielectric metrology with coaxial sensors // Meas. Sci. Technol. 2007. No.18. P. 1372-1386.
  • [16.] McLaughlin B.I., Robertson P.A. Miniature open-ended coaxial probes for dielectric spectroscopy applications // J. Phys. D: Appl. Phys. 2007. No.40. P. 45-53.
  • [17.] Nozokido T., Bae J., Mizuno K. Scanning Near-Field Millimeter-Wave Microscopy Using a Metal Slit as a Scanning Probe // IEEE Transaction on Microwave Theory and Technique. 2001. Vol. 49, No. 3. P. 491-499.
  • [18.] Panchenko A.Yu. Modeling a small aperture resonator type microwave meter of substance parameters // Telecommunication and Radio Engineering. 1998. Vol. 52, No. 8. P. 118-121.
  • [19.] Wen Mingming. Ch. Liu, Panchenko A. Yu., Slipchenko N.I. Evaluation of influence of microwave radiation sensor in the form of an open-end of the coaxial line on its metrological characteristics // Telecommunications and Radio Engineering. 2015. Vol. 74, No. 15. P. 1355-1366.
  • [20.] Lju Chan, Panchenko A. Ju., Slipchenko N.I., Zajchenko O.B. Blizhnepolevoj koaksial’nyj sensor otkrytogo tipa. Ocenka prostranstvennoj razreshajushhej sposobnosti izmeritel’noj apertury // Vestnik NTU KPI. Serija Radiotehnika. Radioapparatostroenie. 2017. Vyp. 71. S. 17-24.
  • [21.] Hosseini M.H. Heidar H., Shams M.H. Wideband Nondestructive Measurement of Complex Permittivity and Permeability Using Coupled Coaxial Probes // IEEE Transactions on Instrumentation and Measurement. 2017. Vol. 66, No. 1. P. 148-157.
  • [22.] Panchenko B.A. Tenzornye funkcii Grina uravnenij Maksvella dlja cilindricheskih oblastej // Radiotehnika: Vseukrainskij mezhvedomstvennyj nauchno-tehnicheskij sbornik. 1970. Vyp. 15. S. 82-91.
  • [23.] Tai C.T. Dyadic Green’s functions for a coaxial line // IEEE Trans. of Antennas and Propagation. 1983. Vol. 48, No. 2. P. 355-358.
  • [24.] Gordienko Ju. E., Panchenko A. Ju., Far R.S. Priblizhenie zadannogo polja v zadachah opredelenija harakteristik rezonatornyh SVCh – datchikov aperturnogo tipa // Radiotehnika: Vseukrainskij mezhvedomstvennyj nauchno-tehnicheskij sbornik. 1998. Vyp. 107. S. 93-103.
  • [25.] Lju Chan, Panchenko A. Ju., Slipchenko N. I., Zajchenko O.B. Koaksial’nyj sensor otkrytogo tipa. Integral’noe uravnenie jelektricheskogo polja v ploskosti apertury // Vestnik NTU KPI. Serija Radiotehnika. Radioapparatostroenie. 2017. Vyp. 69. S. 11-16.
  • [26.] Kolmogorov A. Ob entropiji na edinitzu vremeni kak metricheskom invariante avtomorfizmov // Doklady AN SSSR. 1959. T. 124. S. 754-755.
  • [27.] Koroljov O.L., Kussij M.Yu., Sigal A.V. Primenenie entropiji pri modelirovaniji processov prinjatija reshenij v ekonomike: Monografija. Simferopol: Izdat. “ODJAK”, 2013. 148s.
  • [28.] Kuznetsov A.A. Metodji analiza i obrabotki EEG signalov: novie podhodji k sboru informatsiji: monografija. Vladimir: Izdanije Gos. Universiteta Rossii. 2008. 140s.
  • [29.] Loskutov A.Yu., Kozlov A.A., Chachanov Yu. M. Entropija i prognoz vremennich rjadov v teoriji dinamicheskich system // Izvestija visshich uchebnich zavedenij. Prikladnaja nelinejnaja dinamika. 2008. T. 17, No. 4. S. 98-113.
  • [30.] Mayorov O. Yu., Fritzsche M., Glukhov A.B., and oth. New neurodiagnostics technology for brain research on the basis of multivariate and nonlinear (deterministic chaos) analysis of EEG // Proc. of the 2nd European Congr. “Achievements in space medicine into health care practice and industry”. Pabst Science Publ., Berlin, 2003. P. 157-166.
  • [31.] Costa M., Costa M., Goldberger A.L., Peng C.K. Multiscale entropy analysis of complex physiologic time series // Phys. Rev. Lett. 2002. Vol. 89: 068102.
  • [32.] Pincus S.M., Gladstone I.M., Ehrenkranz R.A. A regularity statistic for medical data analysis // J. Clin. Monit. 1991. No.7. P. 335-345.
  • [33.] Richman J.S., Moorman J.R. Physiological time-series analysis using approximate entropy and sample entropy // Am. J. Physiol. Heart Circ. Physiol. 2000. Vol. 278. P. H2039-2049.
  • [34.] Majorov O. Yu., Gluhov A.B., Fenchenko V.N., Prognimak A.B. Realizatsija metoda smeschenija s pomoschju ocenki razmerov osej attraktora po odnomernoj realizatsiji dinamicheskoj sistemi mozga // Trudi Instituta kibernetiki NANU. Vyp. 153. 2007. S. 3-11.
  • [35.] GOST 8.544-86. Otnositelnaya dielektricheskaya pronitsaemost i tangens ugla poter dielektrikov. – Moskva, 1986.
  • [36.] Submillimetrovaya dielektricheskaya spektroskopiya tverdogo tela // Trudyi IOFAN (Instituta obschey fiziki Akademii nauk). – 1990. – T. 25.
  • [37.] Krupnov A.F., Tretyakov M.Yu., Markov V.N. et al. // Proc. 3rd International symposium “Physics of millimeter and submillimeter waves MSMW’98”. – 1998. – Vol. 1. – P. 115-120.
  • [38.] Brandt A.A. Issledovanie dielektrikov na sverhvyisokih chastotah. – Moskva, 1963.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62e642df-2de7-49cd-b885-361ea5889cc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.