PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of particle properties on rheology of low-concentration coal suspensions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In wet coal preparation, the products of some processes are transported as low-concentration suspensions. Their rheology is greatly affected by the properties of the coal particles that result from the formation and weathering during preparation. In this study, the properties of coal particles, including volumetric properties (i.e., solids content, granularity, and clay mineral fraction) and surface characteristics (i.e., dynamic potential, degree of coalification, and degree of surface oxidization), were studied to determine their effects on the apparent viscosity of low-concentration coal suspensions. With increasing solids content and smaller particle size in the suspension, the interactions between the coal particles became stronger due to the increased particle content, thus increasing the coal suspension’s apparent viscosity. Adding clay minerals to the suspension gradually changed its composition and structure and increased its viscosity. The dynamic potential of the coal particles and inter-particle electrostatic repulsive forces were reduced with the addition of Ca2+ ions, and the coal particles collided and aggregated, which increased the apparent viscosity of the suspension. For coal with a low degree of coalification or coal had been oxidized by a hydrogen peroxide solution, the suspension of the hydrophilic coal particles was associated with a lower apparent viscosity than that of highly hydrophobic solids, which tended to aggregate and form flocculent masses.
Rocznik
Strony
984--995
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
autor
  • College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
autor
  • College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
autor
  • College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
  • dxshu520@163.com
autor
  • College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
Bibliografia
  • BAKKER, C.W., MEYER, C.J., DEGLON, D.A., 2009. Numerical modelling of non-Newtonian slurry in a mechanical flotation cell. Miner. Eng. 22 (11), 944-950.
  • BOGER, D.V., 2009. Rheology and the resource industries. Chem. Eng. Sci. 64(22), 4525-4536.
  • CHEN, X., WANG, C., WANG, Z., ZHAO, H., LIU, H., 2019. Preparation of high concentration coal water slurry of lignite based on surface modification using the second fluid and the second particle. Fuel 242, 788-793.
  • COLLINS, D.N., TURNBULL, T., WRIGHT, R. NGAN, W., 1983. Separation efficiency in dense media cyclones. Trans. Inst. Min. Metall.
  • CRUZ, N., PENG, Y., WIGHTMAN, E., XU, N., 2015. The interaction of clay minerals with gypsum and its effects on copper-gold flotation. Miner. Eng. 77, 121-130.
  • CRUZ, N., PENG, Y., 2016. Rheology measurements for flotation slurries with high clay contents-A critical review. Miner. Eng. 98, 137-150.
  • FARROKHPAY, S., 2012. The importance of rheology in mineral flotation: A review. Miner. Eng. 36-38, 272-278.
  • FERNANDEZ, R., MARTIRENA, F., SCRIVENER, K.L., 2011. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 41(1), 113-122.
  • HASSAS, B., KARAKAŞ, F., ÇELIK, M., 2014. Ultrafine coal dewatering: Relationship between hydrophilic lipophilic balance (HLB) of surfactants and coal rank. Int. J. Miner. Process. 133, 97-104.
  • HUANGFU, Z., KHOSO, S.A., SUN, W., HU, Y., CHEN, C., ZHANG, Q., 2018. Utilization of petrochemical by-products as a new frother in flotation separation of molybdenum. J. Cleaner Prod. 2014, 501-510.
  • IP, S., WANG, S., TOGURI, J., 1999. Aluminum foam stabilization by solid particles. Can. Metall. Q. 38(1), 81-92.
  • JANEK, M., LAGALY, G., 2003. Interaction of a cationic surfactant with bentonite, a colloid chemistry study. Colloid Polym. Sci. 281, 293-301.
  • KÉKICHEFF, P., 2019. The long-range attraction between hydrophobic macroscopic surfaces. Adv. Colloid Interface Sci. 270, 191-215.
  • KONDURI, M.K.R., FATEHI, P., 2018. Adsorption and dispersion performance of oxidized sulfomethylated kraft lignin in coal water slurry. Fuel Process. Technol. 176, 267-275.
  • LASKOWSKI, J., 2001. Coal flotation and fine coal utilization. Elsevier.
  • LI, C., RUNGE, K., SHI, F., FARROKHPAY, S., 2016. Effect of flotation froth properties on froth rheology. Powder Technol. 294, 55-65.
  • LI, C., RUNGE, K., SHI, F., FARROKHPAY, S., 2018a. Effect of flotation conditions on froth rheology. Powder Technol. 340,537-542.
  • LI, C., RUNGE, K., SHI, F., FARROKHPAY, S., 2018b. Effect of froth rheology on froth and flotation performance. Miner. Eng. 115, 4-12.
  • LOGINOV, M., LARUE, O., LEBOVKA, N., VOROBIEV, E., 2008. Fluidity of highly concentrated kaolin suspensions: Influence of particle concentration and presence of dispersant. Colloids Surf., A 325(1-2), 64-71.
  • MABUZA, N.T., POCOCK, J., LOVEDAY, B.K., 2005. The use of surface active chemicals in heavy medium viscosity reduction. Miner. Eng. 18, 25-31.
  • MAE, K., MAKI, T., ARAKI, J., MIURA, K., 1997. Solubilization of an Australian brown coal oxidized with hydrogen peroxide in conventionally used solvents at room temperature. Am. Chem. Soc., Div. Fuel Chem. 42(1), 176-180.
  • MAHAUT, F., CHATEAU, X., COUSSOT, P., OVARLEZ, G., 2008. Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids. J. Rheol. 52(1), 287-313.
  • MARKUS, R., 1960. Deformation, strain and flow : an elementary introduction to rheology. Lewis.
  • MEIKAP, B.C., PUROHIT, N.K., MAHADEVAN, V., 2005. Effect of microwave pretreatment of coal for improvement of rheological characteristics of coal-water slurries. J. Colloid Interface Sci. 281(1), 225-235.
  • MICHOT, L.J., BARAVIAN, C., BIHANNIC, I., MADDI, S., MOYNE, C., DUVAL, J.F.L., LEVITZ, P., DAVIDSON, P., DAVIDSON, P., 2009. Sol-gel and isotropic/nematic transitions in aqueous suspensions of natural nontronite clay. Influence of particle anisotropy. 2. Gel structure and mechanical properties. Langmuir 25(1):127-139.
  • MUELLER, S., LLEWELLIN, E.W., MADER, H.M., 2010. The rheology of suspensions of solid particles. Proc. R. Soc. London, Ser. A 466, 1201-1228.
  • MUKHERJEE, A., ROZELLE, P., PISUPATI, S.V., 2015. Effect of hydrophobicity on viscosity of carbonaceous solid-water slurry. Fuel Process. Technol. 137, 124-130.
  • OZDEMIR, O., 2013. Specific ion effect of chloride salts on collectorless flotation of coal. Physicochem. Probl. Miner. Process. 49.
  • REN, Y., ZHENG, J., YANG, X., XU, Z., CAO, Z., 2017. Improvement on slurry ability of lignite under microwave irradiation. Fuel 191, 230-238.
  • SAHOO, B.K., DE, S., MEIKAP, B.C., 2017. Artificial neural network approach for rheological characteristics of coal-water slurry using microwave pre-treatment. Int. J. Min. Sci. Technol. 27, 379-386.
  • SHABALALA, N.Z.P., HARRIS, M., LEAL, FILHO, L.S., DEGLON, D.A., 2011. Effect of slurry rheology on gas dispersion in a pilot-scale mechanical flotation cell. Miner. Eng. 24(13), 1448-1453.
  • SHI, F., ZHENG, X., 2003. The rheology of flotation froths. Int. J. Miner. Process. 69(1-4), 115-128.
  • SHI, F., 2016. Determination of ferrosilicon medium rheology and stability. Miner. Eng. 98, 60-70.
  • THENG, B.K.G., 2012. Formation and properties of clay-polymer complexes. Elsevier.
  • TUROV, V.V., MIRONYUK, I.F., 1998. Adsorption layers of water on the surface of hydrophilic, hydrophobic and mixed silicas. Colloids Surf., A 134(3), 257–263.
  • URDIALES, C., SANDOVAL, M.P., ESCUDEY, M., PIZARRO, C., KNICKER, H., REYES-BOZO, L., ANTILÉN, M., 2018. Surfactant properties of humic acids extracted from volcanic soils and their applicability in mineral flotation processes. J. Environ. Manage. 227, 117-123.
  • WANG, C., ZHAO, H., DAI, Z., LI, W., LIU, H., 2019. Influence of alkaline additive on viscosity of coal water slurry. Fuel 235, 639-646.
  • WOODCOCK, L.V., 1997. Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures. Nature 385(5), 141.
  • ZHANG, J., ZHAO, H., WANG, C., LI, W., XU, J., LIU, H., 2016. The influence of pre-absorbing water in coal on the viscosity of coal water slurry. Fuel 177, 19-27.
  • ZHANG, N., CHEN, X., NICHOLSON, T., PENG, Y., 2018a. The effect of froth on the dewatering of coals-An oscillatory rheology study. Fuel 222, 362-369.
  • ZHANG, M., WANG, B., CHEN, Y., 2018b. Investigating slime coating in coal flotation using the rheological properties at low CaCl2 concentrations. Int. J. Coal Prep. Util. 38(5), 237-249.
  • ZHANG, N., CHEN, X., NICHOLSON, T., PENG, Y., 2019. The effect of saline water on the settling of coal slurry and coal froth. Powder Technol. 344, 161-168.
  • ZHU, J., WANG, P., ZHANG, W., LI, J., ZHANG, G., 2017. Polycarboxylate adsorption on coal surfaces and its effect on viscosity of coal-water slurries. Powder Technol. 315, 98–105.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62e1a16d-83df-4211-8a34-149675b35150
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.