Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the geomicrobiological analysis of acid water reservoirs and Acid Mine Drainage (AMD) developed in the weathering zone of pyrite-bearing schists near the closed-down pyrite mine in Wieściszowice (south-western Poland). The analysis was focused on two reservoirs characterized by different physical and chemical properties (pH, redox potential, content of sulphates and heavy metals). The study is the first thorough report on the geomicrobiological relationships taking place in the AMD setting in Wieściszowice and enables a description of the microbiological processes that significantly influence biogeochemical cycles of sulfur and iron in the analyzed water reservoirs. The reservoir water also harbors numerous big, organized microbial structures in the form of streamers. Samples of these structures were studied in detail using optical and electron microscopy, as well as microbiological cultivation and molecular methods. According to the obtained results, the slime streamers from the Wieściszowice mine are characterized by the co-occurrence of typical chemolithoautotrophic microorganisms oxidizing sulphur and iron together with sulphate reducing bacteria. The presence of these structures probably depends on the occurrence of iron (II) in the surrounding environment.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
601–--612
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
- Department of Environmental Protection and Natural Resources, Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warszawa, Poland
autor
- Institute of Mineralogy, Geochemistry and Petrology, Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warszawa, Poland
autor
- Institute of Mineralogy, Geochemistry and Petrology, Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warszawa, Poland
autor
- Autonomous Department of Microbial Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warszawa, Poland
Bibliografia
- 1. Baker B.J., Banfield J.F. (2003) Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44: 139-152.
- 2. Balcerzak E., Dobrzyński D., Parafiniuk J. (1992) The effects of mineral alterations on the chemical composition of waters in the weathered zone of pyrite-bearing schists in Wieściszowice, Rudawy Janowickie Mts., W. Sudetes, Poland (in Polish with English summary). Annales Societatis Geologorum Poloniae, 62 (1): 75-93.
- 3. Baumgartner L.K., Reid R.P., Dupraz C., Decho A.W., Buckley D.H., Spear J.R., Przekop K.M., Visscher P.T. (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sedimentary Geology, 185: 131-145.
- 4. Bond P.L., Druschel G.K., Banfield J.F. (2000) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Applied and Environmental Microbiology, 66 (11): 4962-4971.
- 5. Ehrlich H. (2001) Geomicrobiology. New York: Mercel Dekker, Inc.: 153-177.
- 6. Fauque G., Legall J., Barton L.L. (1991) Sulfate-reducing and sulfur reducing bacteria. In: Variations in Autotrophic Life (eds. J.M.I., Shively and L.L. Barton). Academic Press Ltd.
- 7. Fortin D., Davis B., Beveridge T.J. (1996) Role of Thiobacillus and sulfate-reducing bacteria in iron biocycling in oxic and acidic mine tailings. Microbiology Ecology, 21: 11-24.
- 8. Gibson G. (1990) Physiology and ecology of the sulphate-reducing bacteria. Journal of Applied Bacteriology, 69: 769-797.
- 9. González-Toril E., Aguilera A., Souza-Egipsy V., López-Pamo E., Sánchez-Espana J., Amils A. (2011) Geomicrobiology of La Zarza-Perrunal acid mine eftluent (Iberian Pyritic Belt, Spain). Applied and Environmental Microbiology, 77 (8): 2685-2694.
- 10. Hallberg K.B. (2010) New perspectives in acid mine drainage microbiology. Hydrometallurgy, 104: 448-453.
- 11. Harvey A.E., Smart J.A., Amis E.S. (1955) Simultaneous spectrophotometric determination of iron (II) and total iron with 1,10-phenanthroline. Analytical Chemistry, 27 (1): 26-29.
- 12. Hao O.J., Chen J.M., Huang L., Buglass R.L. (1996) Sulfate-reducing bacteria. Critical Reviews in Environmental Science and Technology, 26: 155-187.
- 13. Holt J.G., Krieg N.R., Sneath P.H., Staley J.T., Williams S.R. (2000) Bergey's Manual of Determinative Bacteriology, 9th ed. Lippincott Williams and Wilkins: 427-438.
- 14. Joeckel R.M., Ang Clement B.J., VanFleet Bates L.R. (2005) Sulfate-mineral crusts from pyrite weathering and acid rock drainage in the Dakota Formation and Graneros Shale, Jefterson County, Nebraska. Chemical Geology, 215: 433-452.
- 15. Johnson D.B. (1998) Biodiversity and ecology of acidophilic microorganisms. Microbiology Ecology, 27: 307-317.
- 16. Kappler U., Friedrich C.G., Truper H.G., Dahl C. (2001) Evidence for two pathways of thiosulfate oxidation in Starkeya novella (formerly Thiobacillus novellus). Archives of Microbiology, 175: 102-111.
- 17. Kolmert A., Wikstrom P., Hallberg K.B. (2000) A fast and simple turbidimetric method for the determination of sultate in sulfate-reducing bacterial cultures. Journal of Microbiological Methods, 41: 179-184.
- 18. Koschorreck M. (2008) Microbial sulphate reduction at low pH. FEMS Microbiology Ecol ogy, 64: 329-342.
- 19. Leduc D., Leduc G., Ferroni G.D. (2002) Quantification of bacterial populations indigenous to acidic drainage streams. Water, Air and Soil Pollution, 135: 1-21.
- 20. Murad E., Schwertmann U., Bigham J.M., Carlson L. (1994) Mineralogical characteristics of poorly crystallized precipitates formed by oxidation of Fe2+ in acid sulfate waters. ACS Symposium Series: Environmental Geochemistry of Sulfide Oxidation, 14: 190-200.
- 21. Nordstrom K., Alpers C.N., Coston J.A., Taylor H.E., McCleskey R.B., Ball J.W., Ogle S., Cotsifas J.S., Davis J.A. (1999) Geochemistry, toxicity, and sorption properties of contaminated sediments and pore waters from two reservoirs receiving acid mine drainage. Proceedings of the Technical Meeting Charleston South Carolina March 8-12, 1999; Volume 1 of 3 Contamination From Hard-Rock Mining, Water-Resources Investigation Report 99-4018A.
- 22. Parafiniuk J. (1996) Sulfate minerals and their origin in the weathering zone of the pyrite-bearing schists at Wieściszowice (Rudawy Janowickie Mts, Western Sudets). Acta Geologica Polonica, 46 (3-4): 353-414.
- 23. Parafiniuk J., Siuda R. (2006) Schwertmannite precipitated from acid mine drainage in the Western Sudetes (SW Poland) and its arsenate sorption capacity. Geological Quarterly, 50 (4): 475-486.
- 24. Postgate J.R. (1984) The Sulphate Reducing Bacteria. Cambridge University Press.
- 25. Praharaj T., Fortin D. (2004) Indicators of microbial sulfate reduction in acidic sultiderich mine tailíngs. Geomicrobiology Journal, 21: 457-467.
- 26. Pronk J.T., Meulenberg R., Hazeu W., Bos P., Kuenen J.G. (1990) Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. FEMS Microbiology Reviews, 75: 293- 306.
- 27. Rampinelli L.R., Azevedo R.D., Teixeira M.C., Guerra-Sá R., Leao V.A. (2008) A sulfate-reducing bacterium with unusual growing capacity in moderately acidic conditions. Biodegradation, 19: 613-619.
- 28. Sánchez-Espana J., López-Pamo E., Pas tor E.S., Ercilla M.D. (2008) The acidic mine pit lakes of the Iberian Pyrite Belt: an approach to their physical limnology and hydrogeochemistry. Applied Geochemistry, 23: 1260-1287.
- 29. Sánchez-Andrea I., Rodríguez N., Amils R., Sanz J.L. (2011) Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. Applied and Environmental Microbiology, 77 (17): 6085-6093.
- 30. Silverman M.P., Lundgren D.G. (1959) Studies on the chemoautotrophic iron bacte rium Ferrobacillus ferrooxidans I. An improved medium and harvesting procedure for securing high cell yields. Journal of Bacteriology, 77: 642-647.
- 31. Webster J.G., Nordstrom K., Smith K.S. (1994) Transport and natural attenuation of Cu, Zn, As and Fe in the acid mine drainage of Leviathan and Bryant Creeks. ACS Symposium Series: Environmental Geochemistry of Sulfide Oxidation, 17: 244-260.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62df23cc-a218-4c5f-bff4-b3471b3c1c85