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The aim of the present paper is to investigate surface waves in a non-homogeneous, isotropic, visco-elastic 
solid medium of n-th order including the time rate of strain. The theory of generalised surface waves has firstly 
been developed and then it has been employed to investigate particular cases of waves, viz., Stoneley, Rayleigh 
and Love type. The wave velocity equations have been obtained for different cases and are in well agreement 
with the corresponding classical result, when the effects of viscosity, temperature, magnetism as well as non-
homogeneity of the material medium are ignored. 
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1. Introduction 
 
 The propagation of surface waves in a non-homogeneous elastic media is of considerable importance 
in earth-quake engineering and seismology on account of occurrence of non-homogeneities in the earth crust, 
as the earth is made up of different layers. The theory of surface waves has been developed by Stoneley, 
Bullen, Ewing et al., Hunters and Jeffreys. 
 The effect of gravity on wave propagation in an elastic solid medium was first considered by 
Bromwich (1898), treating the force of gravity as a type of body force. Love (1965) extended the work of 
Bromwich (1898) and investigated the influence of gravity on superfacial waves and showed that the 
Rayleigh wave velocity is affected by the gravity field. Sezawa (1927) studied the dispersion of elastic waves 
propagated on curved surfaces. 
 The transmission of elastic waves through a stratified solid medium was studied by Thomson. 
Haskell (1953) studied the dispersion of surface waves in multilayered media. A source on elastic waves is 
the monograph of Ewing et al. (1957). 
 Biot (1965) studied the influence of gravity on Rayleigh waves, assuming the force of gravity to 
create a type of initial stress of hydrostatic nature and the medium to be incompressible. Taking into account, 
the effect of initial stresses and using Biot’s theory of incremental deformations, Dey modified the work of 
Jones (1964). De and Sengupta (1974) studied many problems of elastic waves and vibrations under the 
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influence of gravity field. Sengupta and Acharya (1979) studied the influence of gravity on the propagation 
of waves in a thermoelastic layer. Brunelle (1973) studied the surface wave propagation under initial tension 
of compression. Wave propagation in a thin two-layered laminated medium with stress couples under initial 
stresses was studied by Roy (1984). Datta (1986) studied the effect of gravity on Rayleigh wave propagation 
in a homogeneous, isotropic elastic solid medium. Goda (1992) studied the effect of non-homogeneity and 
anisotropy on Stoneley (1924) waves. The interplay of a field with the motion of deformable solids has also 
been undertaken by many investigators (Knopoff, 1956; Banos, 1956; Chadwick, 1957; Yu and Tang, 1966). 
Yu and Tang (1966) discussed the dilatational and rotational waves in a magneto-elastic initially stressed 
conducting medium. Brunelle studied the surface wave propagation under initial tension of compression. 
Wave propagation in a thin two-layered laminated medium with stress couples under initial stresses was 
studied by Roy (1984). Roy and Sengupta investigated the rotatory vibration of a general viscoelastic solid 
sphere and also the radial vibration of a general viscoelastic solid sphere. The details are found in the work of 
Eringen and Sahubi (1975). Datta studied the effect of gravity on Rayleigh wave propagation in a 
homogeneous, isotropic elastic solid medium. Goda studied the effect of non-homogeneity and anisotropy on 
Stoneley waves. Recently Abd-Alla and Ahmed (1996) studied Rayleigh waves in an orthotropic thermo-
elastic medium under gravity field and initial stress. 
 In this work, the problem of n-th order viscoelastic surface waves involving the time rate of strain, 
the medium being isotropic and non-homogeneous has been studied under the influence of a magnetic field 
and temperature. Biot’s theory of incremental deformations has been used to obtain the wave velocity 
equation for Stoneley, Rayleigh and Love waves. Further these equations are in complete agreement with the 
corresponding classical results in the absence of viscosity, magnetic and thermal field, non-homogeneity of 
the material medium. 
 
2. Formulation of the problem 
 
 Let M1 and M2 be two non-homogeneous, viscoelastic, isotropic, semi-finite media. They are 
perfectly welded in-contact to prevent any relative motion or sliding before and after the disturbances and 
that the continuity of displacement, stress etc. hold good across the common boundary surface. Further the 
mechanical properties of M1 are different from those of M2. These media extend to an infinite great distance 
from the origin and are separated by a plane horizontal boundary and M2 is to be taken above M1. 
 Let Oxyz be a set of orthogonal Cartesian co-ordinates and let O be any point on the plane boundary 
and Oz points vertically downward to the medium M1. We consider the possibility of a type of wave traveling 
in the direction Ox, in such a manner that the disturbance is largely confined to the neighborhood of the 
boundary which implies that the wave is a surface wave. 
 It is assume that at any instant, all particles in any line parallel to Oy having equal displacement and 
all partial derivatives with respect to y are zero. Further let us assume that u, v, w are the components of 
displacements at any point (x, y, z) at any time t. 
 The dynamical equations of motion for a three-dimensional non-homogeneous, isotropic, 
viscoelastic solid medium in Cartesian co-ordinates are 
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where   is the density of the material medium and ij ji     , i, j are the stress components. 

 Let us consider that the medium is a perfect electric conductor. We take the linearized Maxwell 
equations governing the electromagnetic field, taking into account the absence of the displacement current 
(in system-international unit) in the form 
 
  curl h = ,j  (i) 

  curl E = e t





h

, (ii) 

  div h = 0 (iii) 
 
where 
 
  h = curl   ,0H  (iv) 

 
and   Hi=    .0 ii

H h  

 
We consider an orthotropic elastic solid under constant primary magnetic field 0H  acting on the y-axis. 
 It is assumed that prior to the existence of any disturbance both the media are everywhere at the 
constant absolute temperature 0T . 
 The stress-strain relations for a general isotropic, thermo, viscoelastic medium, according to Voigt 
are 
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, ,  ,  D D D      are elastic constants. (2.3) 

 
 Introducing Eq.(2.2) in Eqs (2.1a), (2.1b), (2.1c), we get 
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 We assume that the non-homogeneities for the media 1M  and 2M  are given by 
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where 0 , 0M , 0 , 0  are elastic constants, whereas 0 , 0  are thermal parameters 0 , 0 , m, n are 

constants. K ,  e K
  (K = 0,1,2, .... n) are the parameters associated with K-th order visco-elasticity and K

and  e (K = 1, 2, ....., n) are the thermal and magnetic parameters associated with K-th order. T is the 

absolute temperature over the initial temperature .0T  
 Due to a temperature rise of the material medium, it has been observed that all the parameters 
representing the elastic property, the effect of viscosity and thermal field depend on the temperature and 
ultimately depend on time t. In a thermo viscoelastic solid, the thermal parameters K (K = 0, 1, ...... n) are 

given by    K K K t3 2      , where t  is the coefficient of linear expansion of the solid. 
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 To investigate the surface wave propagation along the direction of Ox, we introduce the 
displacement potential  (x, z, t) and  (x, z, t) which are related to the displacement components as follows 
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x z
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 
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z x
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 Substituting Eq.(2.8) in Eqs (2.6a), (2.6b) and (2.6c), we get 
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 To determine T, Fourier’s law of heat conduction is used 
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where K is the thermal conductivity and obeys the law as given by K = mz
0K e , p = 0

0

K


 and C  is the 

specific heat of the body at constant volume.  
 Further, similar relations in the medium 2M  can be found out by replacing ,  ,  ,   K K K 0     by 

,  ,  ,  K K K 0        and so on. 
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3. Solution of the problem 
 
 Now our main objectives to solve Eqs (2.9a), (2.9b), (2.9c) and Eq.(2.11). We seek the solutions in 
the following forms 
 

             –, ,  ,  , ,  ,   .i x ct
1T v f z g z T z h z e        (3.1) 

 
 Using Eq.(3.1) in Eqs (2.9a), (2.9b), (2.9c) and Eq.(2.11), we get a set of differential equations for 
the medium 1M  as follows 
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and those for the medium 2M  are given by 
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 Equations (3.2) and (3.4) must have exponential solutions so that f, g, 1T , h will describe surface 

waves, and they must become vanishing small as .z   
 Hence for the medium 1M   
 

   (x, z, t)=     ,31 2 i x ctzz z
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and similarly for the medium 2M   
 

   (x, z, t)=     ,31 2 i x ctzz z
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where j  and j  (j = 1, 2, 3) are the real roots of the equation 
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  1     + ,            2 2 2 2 2
1 2 1 1 12m 1 f K A 4m h Bg      ,  

 

  3 =     +  ,2 2 2 2
1 1 1 12mA 2 f m K A 2mh 2mBg    (3.8) 

 

  4  =              –  ,2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1AK 4m A f K A h m l f BK g Bg        

 

  5 =     –   2 2 2 2 2
1 1 1 12mAK f 2mAh 2m Bg  ,  

 

  6  =       –   ,2 2 2 2 2 2 2 2 2
1 1 1 1 1 1AK h A m l f B K g    

 

  6          5 4 3 2
1 2 3 4 5 6 0                             (3.9) 

 

where, 
 

  1     ,            , 2 2 2 2 2
1 2 1 1 12l 1 f K A 4l h B g               

 

         ,2 2 2 2
3 1 1 1 12lA 2lf K A 2lh 2lB g             

 

                      –   , 2 2 2 2 2 2 2 2 2 2 2 2 2
4 1 1 1 1 1 1 1 1 1A K 4l A f K A h l l f B K g B g                        

 

        – 2 2 2 2 2
5 1 1 1 12lA K f 2lA h 2l B g            

 

          –   .2 2 2 2 2 2 2 2 2
6 1 1 1 1 1 1A K h A l l f B K g               (3.10) 
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and      , ,
1 1

2 22 2 2 2
4 4 1 1m m 4K 2 1 1 4 K 2

         
 

 

 
where the symbols used in Eqs (3.8) and (3.10) are given by Eqs (3.3) and (3.5). 
 The constants Aj, Bj, Cj (j = 1, 2, 3) are related with A'j, B'j, C'j (j = 1, 2, 3) in Eqs (3.6a) and (3.6b) 

by means of first equations in Eqs (3.2) and (3.4). 

 Equating the coefficients of - -- - - -, , , , ,3 31 2 1 2z zz z z ze e e e e e        to zero, after substituting Eqs (3.6a) 
and (3.6b) in the first and 3rd equations of Eq.(3.2) and Eq.(3.4), respectively, we get 
 
   ,     ,     ,2 1 1 2 2 1 2 3 1A A B B C C       
 
and   ,    ,     3 1 1 3 2 1 3 3 1A A B B C C       (3.11) 
 

where, 
 

  j =  , , , ,
2
1

2 2
j j 1

i ml
j 1 2 3

2m K

 


   
  

 

   –         ,  ,  ,  .2 2 2 2
j j 1 j 1 1 j2

1

1
2m f h i m f j 1 2 3

g
            

 
 A similar result holds for the medium 2M  and usual symbols are replaced by dashes respectively. 

 
4. Boundary conditions 
 
 (i) The displacement components, temperature and temperature flux at the boundary surface between 
the media 1M  and 2M  must be continuous at all times and positions 
 

i.e.,   , , , ,
1M

T
u w T p

z

   
= , , , , .

2M

T
u w T p

z

   
 

 
 (ii) The stress components ,  ,   31 32 33   must be continuous at the boundary z = 0, 
 
i.e.,      ,  ,  ,  ,  

1 2
31 32 33 31 32 33M M
           at     z = 0,      respectively 

 

where,  

  31 =
2 2 2

2 2
D 2

x z x z

      

       
, 

 

  32 = D
z



, (4.1) 

 

  33 = e

2 2
2 2 2

B m 02
D 2 D D T D H

x zz
 

    
          

. 
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 Applying the boundary conditions, we get 
 
           –     –   +   –   –   –   1 1 1 1 2 2 1 3 3 1 3 1A 1 i B 1 i C 1 i A 1 i              (4.2a) 

     –  –   –  –   ,1 2 2 1 3 3B 1 i C 1 i 0           

 
  C = C', (4.2b) 
 
                  –    1 1 1 1 2 2 1 3 3 1 1 1A i B i C i A i                   

     –    –    ,1 2 2 1 3 3B i C i 0             (4.2c) 

 
  ,1 1 2 1 3 1 1 1 2 1 3 1A B C A B C                 (4.2d) 
 
        –     –  ,1 1 1 2 2 2 3 3 1 1 1 1 2 2 1 3 3 1p A p B p C p A p B p C 0                            (4.2e) 
 

       *        2 2 2
K 1 1 1 1 1 2 2 2 2 1 3 3 3 3 12i A 2i B 2i C                      (4.2f) 

     *     2 2
K 1 1 1 1 1 2 2 2 2 12i A 2i B                       +   ,2

3 3 3 3 12i C            

 

     * *– – ,K 4 K 4C C        (4.2g) 

 

       ** * * –  – –2 2 2
1 K e 0 1 K 1 1 K 1K

A H 1 2 i             
 

  +      ** * * – – –2 2 2
1 K e 0 2 K 2 2 K 2K

B H 1 2 i            
 

  +       ** * *  –  – –2 2 2
1 K e 0 3 K 3 3 K 3K

C H 1 2 i             
 

       ** * *– –2 2 2
1 K e 0 1 K 1 1 K 1K

A H 1 2 i                       
 

       ** * *–2 2 2
1 K e 0 2 K 2 2 K 2K

B H 1 2 i                    
 

       ** * *–  –  –2 2 2
1 K e 0 3 K 3 3 K 3K

C H 1 2 i                    
 (4.2h) 

 

where,  
j

j


 


,                   

j
j


 


,                   j = 1, 2, 3, 

and 
 

   *
n

K
K K

K 0

i c


     ,                      K
* =   ,

n
K

K
K 0

i c


    

 

  K
* =  

n
K

K
K 0

i c


   ,                         *e K
 =     ,

n
K

e K
K 0

i c


    
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  *
K  =  

n
K

K
K 0

i c


   ,                       *
K =   ,

n
K

K
K 0

i c


    

 

  *
K =   ,

n
K

K
K 0

i c


                              *e K
 =     .

n
K

e K
K 0

i c


    

 
 From Eqs (4.2b) and (4.2g), we have C = C' = 0. Thus there is no propagation of displacement v. 
Hence SH-waves do not occur in this case. 
 Finally, eliminating the constants A1, B1, C1, A'1, B'1, C'1, from the remaining equations, we get 

 
  det (aij) = 0,          i, j = 1, 2, 3, 4, 5, 6 

 
where, 
 
   –  ,  – ,   – ,11 1 1 12 2 2 13 3 3a 1 i a 1 i a 1 i          
 
          – ,     – ,    – ,14 1 1 15 2 2 16 3 3a i 1 a i 1 a i 1               

 
   ,    ,    ,21 1 1 22 2 2 23 3 3a i a i a i             
 
         ,   ,   ,24 1 1 25 2 2 26 3 3a i a i a i                  

 
  ,  ,  ,   – ,   ,  31 1 32 2 33 3 34 1 35 2a a a a a            
 
  ,36 3a    ,    ,    ,41 1 1 42 2 2 43 3 3a p a p a p           
 
   – ,  – ,  – ,44 1 1 45 2 2 46 3 3a p a p a p                  
 

     * *   ,    ,2 2
51 K 1 1 1 1 52 K 2 2 2 2a 2i a 2i               

   (4.3) 

   *  2
53 K 3 3 3 3a 2i       ,       *  2

54 K 1 1 1 1a 2i           ,  

 

   *  ,2
55 K 2 2 1 2a 2i                    *  ,2

56 K 3 3 3 3a 2i            

 

       ** * *  – – – , 2 2 2
61 K e 0 1 K 1 1 K 1K

a H 1 2 i            

 

       ** * *  – – – ,2 2 2
62 K e 0 2 K 2 2 K 2K

a H 1 2 i            

 

       ** * *  – – – ,2 2 2
63 K e 0 3 K 3 3 K 3K

a H 1 2 i            
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       ** * *  – – – ,2 2 2
64 K e 0 1 K 1 1 K 1K

a H 1 2 i                   

 

       ** * *  – – – ,2 2 2
65 K e 0 2 K 2 2 K 2K

a H 1 2 i                   

 

       ** * *  – – – .2 2 2
66 K e 0 3 K 3 3 K 3K

a H 1 2 i                    

 
 From Eq.(4.3), we obtain the velocity of surface waves in a common boundary between two 
viscoelastic, non-homogeneous solid media under the influence of the thermal and magnetic field, where the 
viscosity is of general n-th order involving the time rate of change of strain. 
 
5. Particular cases 
 
Stoneley waves: 
 
 They are a generalised form of Rayleigh waves in which we assume that waves are propagated along 
the common boundary of two semi-infinite media M1 and M2. Thus Eq.(4.3) determines the wave velocity 

equation for Stoneley waves in the case of general magneto-thermo viscoelastic, non-homogeneous solid 
media of n-th order involving the time rate of strain. Clearly, from Eq.(4.3) it is follows that the wave 
velocity equation for Stoneley waves depends upon the non-homogeneity of the material medium, 
temperature, magnetic and viscous field. This equation, of course, is in good agreement with the 
corresponding classical result, when the effects of the thermal, magnetic and viscous field and non-
homogeneity are absent. 
 
Rayleigh waves: 
 
 To investigate the possibility of Rayleigh waves in thermo viscoelastic, non-homogeneous elastic 
media, we replace media M2 by vacuum, in the proceeding problem. We also note the SH-waves do not 

occur in this case. 
 Since the temperature difference across the boundary is always small, the thermal condition is given 
by 
 

  
T

hT
z





= 0           at             z = 0,              respectively. (5.1) 

 
 Thus Eqs (4.2f) and (4.2h) reduce to, 
 

      2
1 1 1 12i         2

1 2 2 2 2A 2i         2
1 3 3 3 3B 2i      C1 = 0, (5.2a) 

 

     **  –2 2
K e 0 1K

H 1    
+  * * – –2

K 1 1 K 12 i        A1+ 

  +    **  –2 2
K e 0 2K

H 1    
+  * * – –2

K 2 2 K 22 i        B1+ (5.2b) 

  +    **  –2 2
K e 0 3K

H 1    
+  * * – –2

K 3 3 K 32 i        C1= 0.  
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 From Eq.(5.1), we have 
 
        –   –   –  .1 1 1 2 2 1 3 3 1h A h B h C 0          (5.2c) 

 
 Eliminating A1, B1 and C1 from Eqs (5.2a), (5.2b) and (5.2c), we get 

 
  det (b

ij
)= 0,          i, j = 1, 2, 3                                      (5.3) 

 
where, 
 

       ,2
11 1 1 1 1b 2i                ,2

12 2 2 2 2b 2i                ,2
13 3 3 3 3b 2i      

 

        ** * *   –  – – ,2 2 2
21 K e 0 1 K 1 1 K 1K

b H 1 2 i             
 

 

        ** * *   –  – – ,2 2 2
22 K e 0 2 K 2 2 K 2K

b H 1 2 i             
 (5.4) 

 

        ** * *   –  – – ,2 2 2
23 K e 0 3 K 3 1 K 3K

b H 1 2 i             
 

 
       ,  – ,   – .31 1 1 32 2 2 33 3 3b h b h b h            

 
 Thus Eq.(5.3), gives the wave velocity equation for the Rayleigh waves in non-homogeneous, 
magneto-thermo viscoelastic solid media of n-th order involving time rate of strain. 
 From Eq.(5.3), it follows that the dispersion equation of Rayleigh waves depends upon the non-
homogeneity, the viscous, magnetic and thermal fields. 
 This equation, of course, is in complete agreement with the corresponding classical result by Bullen, 
when the effects of the thermal, magnetic viscous field and non-homogeneity are absent. 
 
Love waves: 
 
 To investigate the possibility of Love waves in non-homogeneous, viscoelastic solid media, we 
introduce medium M

2
 which is obtained by two horizontal plane surfaces at a distance H-apart, while M

1
 

remains infinite. 
 For the medium M

1
, the displacement component  remains same as in the general case given by 

Eq.(3.6). 
 For the medium M

2
, we preserve the full solution, since the displacement component along the y-axis 

i.e., v no longer diminishes with increasing distance from the boundary surface of the two media. 
 

Thus   v' =    4 4z i x ct z i x ct
1 2C e C e

          (5.5) 
 
 In this case, the boundary conditions are 
 

(i) v and 32  are continuous at z = 0 

(ii)  32  = 0 at z = –H. 
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 Applying the boundary conditions (i) and (ii) and using Eqs (3.6) and (4.2), we get 
 
  C= C

1
 + C

2
, (5.6) 

 

  – *
K λ4C=    *   – ,K 4 1 4 2C C      (5.7) 

 

  4 4H H
1 2C e C e   = 0. (5.8) 

 
 On eliminating the constants C, C

1
 and C

2
 from Eqs (4.3), (5.1) and (5.2), we get 

 

  tanh (λ'4H)=-
 

*

*
4 K

4 K

 
  

.                                                              (5.9) 

 
 Thus Eq.(5.9) gives the wave velocity equation for Love waves in a non-homogeneous, magneto, 
thermo viscoelastic solid medium of n-th order involving the time rate of strain. Clearly, it depends upon the 
non-homogeneity, magnetic and viscous fields and it is independent of the thermal field. 
 
6. Discussion and conclusions 
 
 The present study reveals the effects of non-homogeneity, viscous, magnetic and thermal fields in the 
wave velocity equations corresponding to Stoneley waves, Rayleigh waves and Love waves.  
 Further, it is found that viscoelastic surface waves are affected by the time rate of strain parameters. 
These parameters influence the wave velocity to an extent depending on the corresponding constants 
characterizing the magneto thermo and visco-elasticity of the material. So the results of this analysis become 
useful in circumstances where these effects cannot be neglected. These velocities depend upon the wave 
number   confirming that these waves are affected by non-homogeneity of the material medium. Some 
special cases of this study in a homogeneous medium under the influence of gravity have been discussed by 
several authors including Sengupta et al. and Das. 
 Also it is noted from Eq.(5.9) is that Love waves do not depend on temperature; these are only 
affected by the viscous, magnetic fields and non-homogeneity of the material medium. In the absence of all 
fields and non-homogeneity, the dispersion equation is in complete agreement with the corresponding 
classical result. 
 Further, for Rayleigh waves in a non-homogeneous, general magneto-thermo viscoelastic solid 
medium of higher order including the time rate of change of strain we find that the wave velocity equation 
proves that there is dispersion of waves due to the presence of non-homogeneity, temperature, magnetic field 
and viscosity. The results are in complete agreement with the corresponding classical results in the absence 
of all fields and compression. 
 It is noted that the wave velocity equation of Stoneley waves is very similar to the corresponding 
problem in the classical theory of elasticity. Here also there is dispersion of waves due to the presence of 
non-homogeneity, magnetic field, temperature and the viscoelastic nature of the solid. Also wave velocity 
equation of this generalized type of surface waves in non-homogeneous magneto, thermo viscoelastic solid 
media of higher order including the time rate of strain is in complete agreement with the corresponding 
classical result in the absence of all fields and non-homogeneity. 
 Further, the solution of wave velocity equation for Stoneley waves cannot be determined by easy 
analytical methods. However, we can apply numerical techniques to solve this determinantal equation by 
choosing suitable values of physical constants for both media M

1
 and M

2
. 
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Nomenclature 
 
 e

ij i,,j = 1,2,3,
 – strain components 

 0H  – primary magnetic field 

 t0 – absolute temperature 

 
K
 (K = 1, 2, ....., n) – thermal  parameters 

 0, 0, '0, '0 – elastic constants 

 
K
, 

K
 (K =1,2, .... n)  – parameters associated with K-th order visco-elasticity 

  e  (K = 1, 2, ....., n) – magnetic parameters 
  – density of the material medium 
 , and v – associated with P waves. SV waves and SH waves 
 ij    i,,j = 1,2,3, – stress components 

 
2 2

2
2 2x z

 
  

 
 – Laplacian operator 
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