Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents an approach of numerical modelling of alloy solidification in permanent mold and transient heat transport between the casting and the mold in two-dimensional space. The gap of time-dependent width called "air gap", filled with heat conducting gaseous medium is included in the model. The coefficient of thermal conductivity of the gas filling the space between the casting and the mold is small enough to introduce significant thermal resistance into the heat transport process. The mathematical model of heat transport is based on the partial differential equation of heat conduction written independently for the solidifying region and the mold. Appropriate solidification model based on the latent heat of solidification is also included in the mathematical description. These equations are supplemented by appropriate initial and boundary conditions. The formation process of air gap depends on the thermal deformations of the mold and the casting. The numerical model is based on the finite element method (FEM) with independent spatial discretization of interacting regions. It results in multi-mesh problem because the considered regions are disconnected.
Czasopismo
Rocznik
Tom
Strony
147--150
Opis fizyczny
Bibliogr. 11 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Armii Krajowej 21, 42-201 Częstochowa, Poland
autor
- Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Armii Krajowej 21, 42-201 Częstochowa, Poland
autor
- Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Armii Krajowej 21, 42-201 Częstochowa, Poland
Bibliografia
- [1] Cooper, M.G., Mikic, B.B. & Yovanovich, M.M. (1969). Thermal contact conductance. Int. J. Heat Mass Transf. 12(3), 279-300. DOI: 10.1016/0017-9310(69)90011-8.
- [2] Longa, W. (1973). Solidification of castings in sand molds. Katowice: Wyd. Śląsk. (in Polish).
- [3] Schneider, G.E., Strong, A.B. & Yovanovich, M.M. (1977). Transient thermal response of two bodies communicating through a small circular contact area. Int. J. Heat Mass Transf. 20(4), 301-308. DOI: 10.1016/0017-9310(77)90150-8.
- [4] Nishida, Y., Droste, W. & Engler, S. (1986). The air-gap formation process at the casting-mold interface and the heat transfer mechanism through the gap. Metall. Trans. B. 17(4), 833-844. DOI: 10.1007/BF02657147.
- [5] Majchrzak, E., Mendakiewicz, J. & Piasecka-Belkhayat, A. (2005). Algorithm of the mould thermal parameters identification in the system casting-mould-environment. J. Mater. Process. Technol. 164-165, 1544-1549. DOI: 10.1016/j.jmatprotec.2005.02.021.
- [6] Dyja, R., Gawrońska, E. & Sczygiol, N. (2015). The effect of mechanical interactions between the casting and the mold on the conditions of heat dissipation: a numerical model. Arch. Metall. Mater. 60(3A), 1901-1909. DOI: 10.1515/amm- 2015-0324.
- [7] Matlak, J. & Słota, D. (2015). Solution of the pure metals solidification problem by involving the material shrinkage and the air-gap between material and mold. Arch. Foundry Eng. 15(spec.3), 47-52.
- [8] Luo, J., Liu, X. & Wang, X. (2016). Analysis of temperature field, heat and fluid flow of two-phase zone continuous casting Cu–Sn alloy wire. Arch. Foundry Eng. 16(1), 33-40. DOI: 10.1515/afe-2015-0099.
- [9] Mochnacki, B., Suchy. J.S. (1993). Modeling and simulation of solidification of castings. Warszawa. (in Polish).
- [10] Sowa, L. (2014). Numerical modelling of fluid flow and thermal phenomena in the tundish of CSC machine. Arch. Foundry Eng. 14(1), 103-106.
- [11] Węgrzyn-Skrzypczak, E. & Skrzypczak, T. (2015). Modeling of thermal contact through gap with the use of Finite Element Method. J Appl Math Comput Mech. 14(4), 145- 152. DOI: 0.17512/jamcm.2015.4.15.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62daee8d-0194-49f8-9902-ba2fc2df530f