PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of textile grid forms on tensile mechanical behaviors of carbon textile-reinforced composites with polyethylene (PE) short fibers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Textile-reinforced composite (TRC) is a new material composed of finely grained cement-based concrete and textile grids, which can be a substitute for fiber-reinforced polymer (FRP) in strengthening applications. The diversity of the textile grid results in a difference in bond behaviors at the textile-matrix interface, which influences the tensile properties of TRC. Several researchers have investigated the tensile behaviors of TRC, mainly concentrating on the matrix strength, the content of short synthetic fibers, and the number of textile grids; discussions on the textile grid geometry, especially the coupling effect between the textile grid form and matrix category, remained limited. Therefore, this paper focuses on the effects of three carbon textile grids on the tensile behavior of TRC through a uniaxial tensile test; the design parameters also include the textile reinforcement ratio and matrix category. Twenty-seven groups of tensile samples were manufactured to investigate the effect of each variable on the crack distribution, failure pattern, stress-strain curve and characteristic parameter. The test results showed that flattening the roving diameter and especially thinning the coating depth ameliorated the matrix-to-textile permeability, and consequently improved the tensile mechanical properties of TRC. The enhancement level of tensile strength by increasing the textile reinforcement ratio was lower than that by optimizing textile grid form. In terms of different textile grid forms, the effect of the matrix category on the tensile performance of TRC showed significant differences. Finally, an analytical model is presented to forecast the stress-strain behavior of TRC with textile rupture failure.
Rocznik
Strony
art. no. e103, 2023
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
  • School of Civil Engineering, Xi’an University of Architecture & Technology, No. 13, Yanta Road, Xi’an 710055, Shaanxi, China
autor
  • School of Civil Engineering, Xi’an University of Architecture & Technology, No. 13, Yanta Road, Xi’an 710055, Shaanxi, China
autor
  • Xi’an Wuhe Building Technology Research Institute Co., Ltd, Xi’an 710055, Shaanxi, China
autor
  • College of Architecture and Civil Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
autor
  • School of Civil Engineering, Xi’an University of Architecture & Technology, No. 13, Yanta Road, Xi’an 710055, Shaanxi, China
autor
  • School of Civil Engineering, Xi’an University of Architecture & Technology, No. 13, Yanta Road, Xi’an 710055, Shaanxi, China
Bibliografia
  • 1. Triantafillou T (2011) Innovative textile-based composites for strengthening and seismic retrofitting of concrete and masonry structures. In: Advances in FRP composites in civil engineering. Springer, Berlin, pp 3-12, https://doi.org/10.1007/978-3-642-17487-2_1.
  • 2. Tetta ZC, Koutas LN, Bournas DA. Textile-reinforced mortar (TRM) versus fiber reinforced polymers (FRP) in shear strengthening of concrete beams. Compos Part B Eng. 2015;77:338-348. https://doi.org/10.1016/j.compositesb.2015.03.055.
  • 3. Papanicolaou CG, Triantafillou TC, Papathanasiou M, Karlos K. Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: out-of-plane cyclic loading. Mater Struct. 2008;41:143-157. https://doi.org/10.1617/s11527-007-9226-0.
  • 4. Raoof SM, Koutas LN, Bournas DA. Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) in flexural strengthening of RC beams. Constr Build Mater. 2017;151:279-291. https://doi.org/10.1016/j.conbuildmat.2017.05.023.
  • 5. ACI 549.4R-13. Guide to design and construction of externally bonded Fabric-Reinforced Cementitious Matrix (FRCM) systems for repair and strengthening concrete and masonry structures. American Concrete Institute. US; 2013.
  • 6. Pellegrino C, Antino TD. Experimental behaviour of existing precast prestressed reinforced concrete elements strengthened with cementitious composite. Compos Part B Eng. 2013;55:31-40. https://doi.org/10.1016/j.compositesb.2013.05.053.
  • 7. Elsanadedy HM, Almusallam TH, Alsayed SH, Al-Salloum YA. Flexural strengthening of RC beams using textile reinforced mortar-experimental and numerical study. Compos Struct. 2013;97:40-55. https://doi.org/10.1016/j.compstruct.2012.09.053.
  • 8. Raoof SM, Koutas LN, Bournas DA. Bond between textile-reinforced mortar (TRM) and concrete substrates: experimental investigation. Compos Part B Eng. 2016;98:350-361. https://doi.org/10.1016/j.compositesb.2016.05.041.
  • 9. Gong T, Ahmed AH, Curosu I. Tensile behavior of hybrid fiber reinforced composite made of strain-hardening cement-based composites and carbon textile. Construct Build Mater. 2020;262:120913. https://doi.org/10.1016/j.conbuildmat.2020.120913.
  • 10. Li BB, Xiong HB, Jiang JF. Tensile behavior of basalt textile grid reinforced engineering cementitious composite. Compos Part B Eng. 2019;156:185-200. https://doi.org/10.1016/j.compositesb.2018.08.059.
  • 11. Barhum R, Mechtcherine V. Influence of short dispersed and short integral glass fibres on the mechanical behaviour of textile-reinforced concrete. Mater Struct. 2013;46:557-572.
  • 12. Jiang J, Jiang C, Li B, Feng P. Bond behavior of basalt textile meshes in ultra-high ductility cementitious composites. Compos Part B Eng. 2019;174:107022. https://doi.org/10.1016/j.compositesb.2019.107022.
  • 13. Yao Y, Silva FA, Butler M, Mechtcherine V, Mobasher B. Tension stiffening in textile-reinforced concrete under high speed tensile loads. Cem Concr Compos. 2015;64:49-61. https://doi.org/10.1016/j.cemconcomp.2015.07.009.
  • 14. Dinh NH, Park SH, Choi KK. Effect of dispersed micro-fibers on tensile behavior of uncoated carbon textile-reinforced cementitious mortar after high-temperature exposure. Cem Concr Comput. 2021;118:103949. https://doi.org/10.1016/j.cemconcomp.2021.103949.
  • 15. Deng MK, Dong ZF, Zhang C. Experimental investigation on tensile behavior of carbon textile reinforced mortar (TRM) added with short polyvinyl alcohol (PVA) fibers. Constr Build Mater. 2020;235:117801. https://doi.org/10.1016/j.conbuildmat.2019.117801.
  • 16. Zhang W, Deng MK, Han YG. Uniaxial tensile performance of high ductile fiber-reinforced concrete with built-in basalt textile grids. Constr Build Mater. 2022;315:125716. https://doi.org/10.1016/j.conbuildmat.2021.125716.
  • 17. Zhang M, Deng MK. Tensile behavior of textile-reinforced composites made of highly ductile fiber-reinforced concrete and carbon textiles. J Build Eng. 2022;52:104824. https://doi.org/10.1016/j.jobe.2022.104824.
  • 18. Barhum R, Mechtcherine V. Effect of short, dispersed glass and carbon fibers on the behavior of textile-reinforced concrete under tensile loading. Eng Fract Mech. 2012;92:56-71. https://doi.org/10.1016/j.engfracmech.2012.06.001.
  • 19. Truong VD, Kim DJ. A review paper on direct tensile behavior and test methods of textile reinforced cementitious composites. Compos Struct. 2021;263:113661. https://doi.org/10.1016/j.compstruct.2021.113661.
  • 20. Zhu D, Peled A, Mobasher B. Dynamic tensile testing of fabric-cement composites. Constr Build Mater. 2011;25(1):385-395. https://doi.org/10.1016/j.conbuildmat.2010.06.014.
  • 21. Zhu ZF, Wang WW, Yin SP. A modified model for predicting cyclic stress-strain relationship of fiber reinforced polymer grid reinforced engineered cementitious composites. Struct Concrete. 2021;22(1):22-37. https://doi.org/10.1002/suco.201900304.
  • 22. Peled A, Bentur A, Yankelevsky D. Effects of woven fabric geometry on the bonding performance of cementitious composites: mechanical performance. Adv Cem Based Mater. 1998;7(1):20-27. https://doi.org/10.1016/S1065-7355(97)00012-6.
  • 23. Evans AG, Zok FW, Davis J. The role of interfaces in fiber reinforced brittle matrix composites. Compos Sci Technol. 1991;42(1-3):3-24. https://doi.org/10.1016/0266-3538(91)90010-M.
  • 24. Carozzi FG, Colombi P, Fava G, Poggi C. A cohesive interface crack model for the matrix-textile debonding in FRCM composites. Compos Struct. 2016;143:230-241. https://doi.org/10.1016/j.compstruct.2016.02.019.
  • 25. Donnini J, Corinaldesi V, Nanni AJ. Mechanical properties of FRCM using carbon fabrics with different coating treatments. Compos Part B Eng. 2016;88:220-228. https://doi.org/10.1016/j.compositesb.2015.11.012.
  • 26. Dvorkin D, Pourasee A, Peled A, Weiss J. Influences of bundle coating on tensile behavior, bonding, cracking and fluid transport of fabric cement-based composites. Cem Concr Compos. 2013;42:9-19. https://doi.org/10.1016/j.cemconcomp.2013.05.005.
  • 27. Cherif C. Textile materials for lightweight constructions: technologies-methods-materials-properties. Springer; 2016. https://doi.org/10.1007/978-3-662-46341-3.
  • 28. Pekmezci BY, Copuroğlu A. Mechanical properties of carbon-fabric-reinforced high-strength matrices. Materials. 2020;13(16):3508. https://doi.org/10.3390/ma13163508.
  • 29. Hegger J, Voss S. Investigations on the bearing behaviour and application potential of textile reinforced concrete. Eng Struct. 2008;30(7):2050-2056. https://doi.org/10.1016/j.engstruct.2008.01.006.
  • 30. Dong ZF, Dai J, Deng MK. Experimental study on the mechanical properties of textile reinforced mortar (TRM) composites with different yarn shapes subjected to uniaxial tension. Arch Civ Mech Eng. 2022;22(4):185. https://doi.org/10.1007/s43452-022-00494-6.
  • 31. Ngo DQ, Nguyen HC, Dinh HT. Effectiveness of carbon textile reinforced concrete in shear strengthening short-span corroded reinforced concrete beams. Case Stud Constr Mater. 2022;16:e00932. https://doi.org/10.1016/j.cscm.2022.e00932.
  • 32. Mechtcherine V. Towards a durability framework for structural elements and structures made of or strengthened with high-performance fibre-reinforced composites. Constr Build Mater. 2012;31;94-104. https://doi.org/10.1016/j.conbuildmat.2011.12.072.
  • 33. Kouris LAS, Triantafillou TC. State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM). Constr Build Mater. 2018;188:1221-1233. https://doi.org/10.1016/j.conbuildmat.2018.08.039.
  • 34. AC434. Acceptance criteria for masonry and concrete strengthening using fiber-reinforced cementitious matrix (FRCM) composite systems. Whittier: ICCEvaluation Service; 2013.
  • 35. Deng MK, Han J, Liu HB. Analysis of compressive toughness and deformability of high ductile fiber reinforced concrete. Adv Mater Sci Eng. 2015. https://doi.org/10.1155/2015/384902.
  • 36. Deng MK, Pan JJ, Sun HZ. Bond behavior of steel bar embedded in Engineered Cementitious Composites under pullout load. Constr Build Mater. 2018;168:705-714. https://doi. org/10.1016/j.conbuildmat.2018.02.165.
  • 37. Deng MK, Zhang YX. Seismic performance of high-ductile fiber-reinforced concrete short columns. Adv Civ Eng. 2018. pp 1-11. https://doi.org/10.1155/2018/3542496.
  • 38. Xu SL, Yan YQ. Mechanical properties of textile reinforced concrete plate at low textile ratios. Acta Mater Compos Sin. 2011;28(05):206-213. https://doi.org/10.13801/j.cnki.fhclxb.2011.05.007 (in Chinese).
  • 39. Caggegi C, Lanoye E, Djama K, Bassil A, Gabor A. Tensile behavior of a basalt TRM strengthening system: influence of mortar and reinforcing textile ratios. Compos Part B: Eng. 2017;130:90-102. https://doi.org/10.1016/j.compositesb.2017.07.027.
  • 40. Cevallos OA, Olivito RS. Effects of fabric parameters on the tensile behaviour of sustainable cementitious composites. Compos Part B Eng. 2015;69:256-266. https://doi.org/10.1016/j.compositesb.2014.10.004.
  • 41. Padalu PKVR, Singh Y, Das S. Efficacy of basalt fiber reinforced cement mortar composite for out-of-plane strengthening of unreinforced masonry. Constr Build Mater. 2018;191:1172-1190. https://doi.org/10.1016/j.conbuildmat.2018.10.077.
  • 42. GB 50010-2010. Code for design of concrete structures. Beijing: Chinese Standard Press; 2010. (in Chinese).
  • 43. Eurocode 2: Design of concrete structures- Part 1: Common rules for building and civil engineering structures. prEN 1992-1. CEN (Comite Europeen de Normalisation). European Committee for Standardisation. Central Secretariat Brussels; 2004.
  • 44. Larrinaga P, Chastre C, San-Jose JT. Non-linear analytical model of composites based on basalt textile reinforced mortar under uniaxial tension. Compos Part B Eng. 2013;55:518-527. https://doi.org/10.1016/j.compositesb.2013.06.043.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62d7dd19-f0c2-4035-b81e-9ea610fcc4d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.