PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of particle size on flotation performance of hematite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of particle size on flotation performance of hematite and quartz was investigated. Microflotation, X-ray photoelectron spectroscopy analysis, reagent adsorption measurements, and collision and attachment probability calculation between particle and bubble were conducted in this investigation. The results showed that the floatability of minerals with different particle size fractions was different, which was mainly related to surface bonding site, reagent adsorption, collision probability and entrainment. The quartz with different particle size had little impact on hematite recovery, but -45 μm fraction negatively affected Fe grade of concentrate both in the direct and reverse flotation of hematite. In the direct flotation, the Fe grade in froth product dropped off due to the fine quartz entrainment. While in the reverse flotation, the Fe grade in sink product dropped off as a result of difficulty in floating fine quartz particles, which was due to lower collision probability. Meanwhile, in the reverse flotation, the presence of hematite fines (-18 μm fraction) also had negative impact on hematite recovery because of fine particle entrainment.
Rocznik
Strony
479--493
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Faculty of Land and Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Faculty of Land and Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Faculty of Land and Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Faculty of Land and Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Faculty of Land and Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Bibliografia
  • ARAÚJO, A.C., VIANA, R.P.M., PERES, A.E.C., 2005. Reagents in iron ores flotation. Miner. Eng. 18, 219-224.
  • CHEN, W., ZHANG, L.G., 2013. Technological progress in processing low-grade complicated refractory iron ores. Nonferrous Met. (Miner. Process. Sect.). (c1), 19-23.
  • FORBES, E., 2011. Shear selective and temperature responsive flocculation: a comparison of fine particle flotation. Int. J. Miner. Process. 99(1/2/3/4), 1-10.
  • GAUDIN, A.M., 1957. Flotation. 2nd ed., Mc Graw-Hill, New York.
  • HAN, Y.X., SUN, Y.S., YI, Y.J., GAO, P., 2015. New development on mineral processing technology of iron ore resources in China. Metal mine. 44(2), 1-11.
  • KAR, B., SAHOO, H., RATH, S., DAS, B., 2013. Investigations on different starches as depressants for iron ore flotation. Miner. Eng. 49, 1-6.
  • KIRJAVAINEN, V.M., 1996. Review and analysis of factors controlling the mechanical flotation of gangue minerals. Int. J. Miner. Process. 46, 21-34.
  • LEISTNER, T., PEUKER, U.A., RUDOLPH, M., 2017. How gangue particle size can affect the recovery of ultrafine and fine particles during froth flotation. Miner. Eng. 109, 1-9.
  • LI, H.Q., FENG, Q.M., YANG, S.Y., OU, L.M., LU, Y., 2014. The entrainment behaviour of sericite in microcrystalline graphite flotation. Int. J. Miner. Process. 127, 1-9.
  • LI, L.X., HAO, H.Q., YUAN Z.T., LIU, J.T.,2017. Molecular dynamics simulation of siderite-hematite-quartz flotation with sodium oleate. Applied Surface Science, 2017, (419): 557-563
  • LIMA, N.P., SOUZA PINTO, T.C., TAVRES, A.C., SWEET, J., 2016. The entrainment effect on the performance of iron ore reverse flotation. Miner. Eng. 96-97, 53-58.
  • LIU, W.G., LIU, W.B, DAI, S.J., WANG, B.Y., 2018. Adsorption of bis(2-hydroxy-3- chloropropyl) dodecylamine on quartz surface and its implication on flotation. Results in Physics, 2018, 9C, 1096-1101.
  • LUO, X.M., YIN, W.Z., SUN, C.Y., WANG, N.L., MA, Y.Q., WANG, Y.F., 2016. Improved flotation performance of hematite fines by using citric acid as a novel dispersant. Int. J. Min. Met. Mater. 23, 1119-1125.
  • MA, X., MARQUES, M., GONTIJO, C., 2011. Comparative studies of reverse cationic/anionic flotation of Vale iron ore. Int. J. Miner. Process. 100 (3/4), 179-183.
  • MELO, F., LASKOWSKI, J.S., 2007. Effect of frothers and solid particles on the rate of water transfer to froth. Int. J. Miner. Process. 84, 33-40.
  • NEETHLING, S.J., CILLIERS, J.J., 2009. The entrainment factor in froth flotation: model for particle size and other operating parameter effects. Int. J. Miner. Process. 93, 141-148.
  • NG, W.S., SONSIE, R., FORBES, E., FRANKS, G.V., 2015. Flocculation flotation of hematite fines with anionic temperature responsive polymer acting as a selective flocculant and collector. Miner. Eng. 77(1), 64-71.
  • NORORI-MCCORMAC, A., BRITO-PARADA, P.R., HADLER, K., COLE, K., CILLIERS, J.J., 2017. The effect of particle size distribution on froth stability in flotation. Sep. Purif. Technol. 184, 240-247.
  • PÉREZ-GARIBAY, R., RAMÍREZ-AGUILERA, N., BOUCHARD, J., RUBIO, J., 2014. Froth flotation of sphalerite: Collector concentration, gas dispersion and particle size effects. Miner. Eng. 57, 72-78.
  • PHAN, C.M, NGUYEN, A.V., MILLER, J.D., EVANS, G.M., JAMESON, G.J., 2003. Investigations of bubble-particle interactions. Int. J. Miner. Process. 72(1-4), 239-254.
  • PITA, F., CASTILHO, A. 2017. Separation of plastics by froth flotation. The role of size, shape and density of the particles. Waste Manage. 60, 91-99.
  • QIU, G.Z., HU, Y.H., WANG, D.Z., 1994. The mechanism of ultrafine hematite carrier flotation. Nonferrous Met. 46(4), 23-28.
  • SMITH, P.G., WARREN, L.J., 1989. Entrainment of particles into flotation froths. Miner. Process. Extr. Metall. Rev. 5, 123-145.
  • SHIBATA, J., FUERSTENAU, D.W., 2003. Flocculation and flotation characteristics of fine hematite with sodium oleate. Int. J. Miner. Process. 72, 25-32.
  • SHRIMALI, K., ATLURI, V., WANG, Y., BACCHUWAR, S., WANG, X., MILLER, J.D., 2018. The nature of hematite depression with cornstarch in the reverse flotation of iron ore. J. Colloid Interface Sci., 524, 337-349.
  • SHRIMALI, K., JIN, J., HASSAS, B.V., WANG, X., MILLER, J.D., 2016a. The surface state of hematite and its wetting characteristics. J. Colloid Interface Sci., 477, 16-24.
  • SHRIMALI, K., MILLER, J.D., 2016b. Polysaccharide depressants for the reverse flotation of iron ore. Trans. Indian Inst. Met., 69(1), 83-95.
  • SUTHERLAND, K.L., 1948. Physical chemistry of flotation. XI. Kinetics of the flotation process. J. Phys. Chem. 52, 394-425.
  • TRAHAR, W.J., 1981. A rational interpretation of the role of particle size in flotation. Int. J. Miner. Process. 8, 289-327.
  • THE SOVIET ACADEMY of SCIENCES, 1959. Non-metallic mineral flotation process. Construction engineering press.
  • VIEIRA, A.M., PERES, A.E.C., 2007. The effect of amine type, pH, and size range in the flotation of quartz. Miner. Eng. 20, 1008-1013.
  • WANG, L., PENG, Y., RUNGE, K., 2016. Entrainment in froth flotation: the degree of entrainment and its contributing factors. Powder Technol. 288, 202-211.
  • WANG, L., PENG, Y., RUNGE, K., BRADSHAW, D.J., 2015. A review of entrainment: mechanisms, contributing factors and modelling in flotation. Miner. Eng. 70, 77-91.
  • WEBER, M.E., PADDOCK, D., 1983. Interceptional and gravitational collision efficiencies for single collectors at intermediate Reynolds numbers. J. Colloid Interface Sci. 94, 328-335.
  • YANG, H.F., TANG, Q.Y., WANG, C.L., ZHANG, J.L., 2013. Flocculation and flotation response of Rhodococcus erythropolis to pure minerals in hematite ores. Miner. Eng. 45, 67-72.
  • YANG, B., 2017. Research on entrainment behavior of chlorite in the flotation process of hematite (MSC thesis). Northeast University, China.
  • YIN, W.Z., MA, Y.Q., WANG, N.L., LUO, X.M., 2013. Research on dispersion flotation of iron ores based on mineral interactive effect. Nonferrous Met. (z1). 146-150.
  • YIN, W.Z., WANG, J.Z., 2014. Effects of particle size and particle interactions on scheelite flotation. Trans. Nonferrous Met. Soc. China. 24, 3682-3687.
  • YIN, W.Z., YANG, X.S., ZHOU, D.P., LI, Y.J., LV, Z.F., 2011. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans. Nonferrous Met. Soc. China. 21(3), 652-664.
  • YOON, R.H., 2000. The role of hydrodynamic and surface forces in bubble-particle interaction. Int. J. Miner. Process. 58 (1-4), 129-143.
  • YOON, R.H., LUTTRELL, G.H., 1989. The effect of bubble size on fine particle flotation. Miner. Process. 5, 101-122.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62be6204-d24e-4552-94d3-929505ec1059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.