Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper,we start by the research of the existence of Lyapunov homogeneous function for a class of homogeneous fractional Systems, then we shall prove that local and global behaviors are the same. The uniform Mittag-Leffler stability of homogeneous fractional time-varying systems is studied. A numerical example is given to illustrate the efficiency of the obtained results.
Czasopismo
Rocznik
Tom
Strony
401--415
Opis fizyczny
Bibliogr. 16 poz., rys., wzory
Twórcy
autor
- University of Gafsa, Tunisia, Faculty of Sciences of Gafsa, Department of Mathematics, University campus Sidi Ahmed Zarroug 2112 Gafsa, Tunisia
autor
- University of Gafsa, Tunisia, Faculty of Sciences of Gafsa, Department of Mathematics, University campus Sidi Ahmed Zarroug 2112 Gafsa, Tunisia
autor
- University of Gafsa, Tunisia, Faculty of Sciences of Gafsa, Department of Mathematics, University campus Sidi Ahmed Zarroug 2112 Gafsa, Tunisia
autor
- University of Gafsa, Tunisia, Faculty of Sciences of Gafsa, Department of Mathematics, University campus Sidi Ahmed Zarroug 2112 Gafsa, Tunisia
Bibliografia
- [1] V. Andrieu, L. Praly, and A. Astolfi: Homogeneous approximation, recursive observer design, and output feedback. SIAM Journal on Control and Optimization, 47(4), (2008), 1814-1850, DOI: 10.1137/060675861.
- [2] A. Bacciotti and L. Rosier: Liapunov Functions and Stability in Control Theory. Lecture Notes in Control and Inform. Sci, 267 (2001), DOI: 10.1007/b139028.
- [3] K. Diethelm: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Series on Complexity, Nonlinearity and Chaos, Springer, Heidelberg, 2010.
- [4] M.A. Duarte-Mermoud, N. Aguila-Camacho, J.A. Gallegos, and R. Castro-Linares: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul., 22(1-3) (2015), 650-659, DOI: 10.1016/j.cnsns.2014.10.008.
- [5] H. Hermes: Homogeneous coordinates and continuous asymptotically stabilizing feedback controls. In: Diff. Eqs., Stability and Control, S. Elaydi, Ed., Lecture Notes in Pure and Applied Math., 127, Marcel Dekker Inc, New York, Vol. 109 (1991), 249-260.
- [6] H. Hermes: Nilpotent and high-order approximations of vector field systems. SIAM Rev, 33, (1991), 238-264, DOI: 10.1137/1033050.
- [7] Y. Li, Y. Chen, and I. Podlubny: Stability of fractional-order nonlinear dynamic system: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl, 59(5) (2010), 1810-1821, DOI: 10.1016/j.camwa.2009.08.019.
- [8] Y. Li, Y. Chen, and I. Podlubny: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 45 (2009), 1965-1969, DOI: 10.1140/epjst/e2011-01379-1.
- [9] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo: Theory and applications of fractional differential equations. North-Holland Mathematics Studies, 204 , Elsevier Science B.V., Amsterdam 2006, DOI: 10.1016/s0304-0208(06)80001-0.
- [10] T. Menard, E. Moulay, and W. Perruquetti: Homogeneous approximations and local observer design. ESAIM: Control, Optimization and Calculus of Variations, 19 (2013), 906-929, DOI: 10.1051/cocv/2012038.
- [11] K.B. Oldham and J. Spanier: The Fractional Calculus. Academic Press, New-York, 1974.
- [12] I. Podlubny: Fractional Differential Equations. Mathematics in Sciences and Engineering. Academic Press, San Diego, 1999.
- [13] H. Rios, D. Efmov, L. Fridman, J. Moreno, and W. Perruquetti: Homogeneity based uniform stability analysis for time-varying systems. IEEE Transactions on automatic control, 61(3), (2016), 725-734, DOI: 10.1109/TAC.2015.2446371.
- [14] R. Rosier: Homogeneous Lyapunov function for homogeneous continuous vector field. System & control letters, 19 (1992), 467-473, DOI: 10.1016/0167-6911(92)90078-7.
- [15] H.T. Tuan and H. Trinh: Stability of fractional-order nonlinear systems by Lyapunov direct method. IET Control Theory Appl, 12 (2018), DOI: 10.1049/ict-cta.2018.5233.
- [16] F. Zhang, C. Li, and Y.Q. Chen: Asymptotical stability of nonlinear fractional differential system with Caputo derivative. Int. J. Differ. Equ., (2011), 1-12, DOI: 10.1155/2011/635165.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62b7227d-6a45-41c4-b33a-cc6a4effac66