PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bromate in Bottled Water – Potential Hazard for Human Health

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Bromiany(V) w wodach butelkowanych – potencjalne zagrożenie zdrowia
Języki publikacji
EN
Abstrakty
EN
In the International Agency for Research on Cancer (IARC) classification, bromates (by-products of water treatment) are categorized as Class 2B carcinogens; i.e., substances that are possibly carcinogenic to humans. The maximal concentration of bromate in drinking water must not be higher than 10 μg/L, while the WHO recommends that bromate levels should be as low as possible. Investigations undertaken in several countries have revealed the presence of bromate in bottled water, too. The main factor responsible for the presence of bromate is ozonation during the manufacturing process or bromate-contaminated substances used in the water disinfection. The regulations currently in force in Poland forbid the addition of bacteriostatic agents and the application of treatment processes that alter the microflora in water. On the other hand, raw water can be filtered, aerated, or treated with air enriched in ozone – although only in the amounts required to remove iron, manganese, arsenic compounds, and sulfides. However, during the manufacturing process, bottled water may be exposed to ozone from electric-powered ionizers used in the process of the dry-cleaning of bottles or PET preforms. The maximal admissible bromate contents in bottled water is 3 μg/L. The current regulations in Poland effectively reduce hazards due to the presence of bromate in water. However, the results of investigations undertaken in other countries indicate that this aspect should be brought to the attention of both water manufacturers and regulatory bodies.
PL
Bromiany(V), uboczny produkt dezynfekcji wód, zostały zakwalifikowane przez Międzynarodową Agencję Badań nad Rakiem do grupy 2B, substancji, których rakotwórcze działanie na człowieka jest możliwe. Wartość parametryczna stężenia jonów BrO3 − w wodach przeznaczonych do spożycia, wynosi 10 µg/L, niemniej jednak zgodnie z zaleceniami WHO należy dążyć do jak najmniejszej ich zawartości. Badania przeprowadzone na terenie kilku krajów wskazują, że bromiany(V) są wykrywane w wodach butelkowanych. Głównym czynnikiem decydującym o obecności tych związków jest stosowanie ozonu w procesie produkcji, ale przyczyną ich obecności mogą być także zanieczyszczone jonami BrO3 − substancje stosowane w dezynfekcji wód. Wody butelkowane w Polsce podlegają przepisom, które zabraniają dodawania do tych wód środków bakteriostatycznych i stosowania zabiegów, które mogą zmienić mikroflorę wód. Możliwe natomiast jest poddawanie wody surowej procesom filtracji, napowietrzania, a także traktowanie wody powietrzem wzbogaconym w ozon, ale tylko w ilości niezbędnej do przeprowadzenia procesu usuwania związków żelaza, manganu, siarki(II) i arsenu. Maksymalna dopuszczalna zawartość bromianów(V) w wodach butelkowanych wynosi 3 µg/L. W procesie produkcyjnym nie można wykluczyć kontaktu wody z ozonem pochodzącym z jonizatora elektrycznego stosowanego w procesie suchego czyszczenia butelek lub preform PET. Obowiązujące w Polsce przepisy dotyczące wód butelkowanych sprzyjają ograniczeniu zagrożenia związanego z obecnością bromianów(V) w tych wodach. Zważywszy na wyniki badań z innych krajów, zarówno producenci, jak i organy kontroli powinni mieć na uwadze potencjalne niebezpieczeństwo pojawienia się bromianów w wodach butelkowanych.
Rocznik
Strony
115--125
Opis fizyczny
Bibliogr. 28 poz., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Drilling, Oil, and Gas, Department of Oil Engineering
Bibliografia
  • [1] IARC International Agency for Research on Cancer: Agents classified by the IARC Monographs, Volumes 1–123. at 2014 [on-line:] http://monographs.iarc.fr/ENG/Classification/ClassificationsAlphaOrder.pdf [access: 11.24.2016].
  • [2] Cook S.J.: The hydrogeology of bromate contamination in the Hertfordshire Chalk: incorporating karst in predictive models The Engineering Doctorate, 2010, [on-line:] http://discovery.ucl.ac.uk/19510/1/19510.pdf [access:11.25.2016].
  • [3] von Gunten U.: Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide iodide or chloride. Water Research, vol. 7, 2003, pp. 1469–148.
  • [4] Olsińska U., Kuś K.: Uboczne produkty ozonowania wód zawierających bromki. Ochrona Środowiska, nr 3, 1997, pp. 33–38.
  • [5] von Gunten U., Salhi E.: Bromate in drinking water. A problem in Switzerland. Ozone Science & Engineering, vol. 25, 2003, pp. 159–166.
  • [6] Jamsheer-Bratkowska M., Skotak K., Bratkowski J.: Ocena jakości wody wodociągowej w Polsce w 2007 r. w świetle badań Państwowej Inspekcji Sanitarnej. Technologia Wody, nr 1(1), 2009, pp. 65–72.
  • [7] Othman A.A., Alans S.A., Altufal M.M.: Determination of bromate in bottled drinking water from Saudi Arabian markets by HPLC/ICP-MS. Analytical Letters, vol. 43, 2010, pp. 886–891.
  • [8] Al-Mudhaf H.F., Al-Hayan M.N., Abu-Shady A.I.: Mineral content of bottled and desalinated household drinking water in Kuwait. CLEAN – Soil, Air, Water, vol. 39, no. 12, 2011, pp. 1068–1080.
  • [9] Dabeka R.W., Conacher H.B.S., Lawrence J.F., Newsome W.H., McKenzie A., Wagner H.P., Chadha R.K.H., Pepper K.: Survey of bottled drinking waters sold in Canada for chlorate, bromide, bromate, lead, cadmium and other trace elements. Food Additives and Contaminants, vol. 19, 2002, pp. 721–732.
  • [10] De Borba B.M., Rohrer J.S., Pohl C.A., Saini C.: Determination of trace concentrations of bromate in municipal and bottled drinking waters using a hydroxide-selective column with ion chromatography. Journal of Chromatography A, vol. 1085, no. 1, 2005, pp. 23–32.
  • [11] Lawal W., Gandhi J., Zhang C.: Direct injection, simple and robust analysis of trace-level bromate and bromide in drinking water by IC with suppressed conductivity detection. Journal of Chromatographic Science, vol. 48, 2010, pp. 537–543.
  • [12] Snyder S.A., Vanderford B.J., Rexing D.J.: Trace analysis of bromate, chlorate, iodate, and perchlorate in natural and bottled waters. Environmental Science and Technology, vol. 39, 2005, pp. 4586–4593.
  • [13] Kim H-J., Shin H-S.: Ultra trace determination of bromate in mineral water and table salt by liquid chromatography-tandem mass spectrometry. Talanta, vol. 99, 2012, pp. 677–682.
  • [14] Al-Ansi S.A., Othman A.A, Al-Tufail M.A.: Bromate pollutant in ozonated bottled Zamzam water from Saudi Arabia determined by LC/ICP-MS. Journal of Environmental Science and Health Part A, vol. 46, no. 13, 2011, pp. 1529–1532.
  • [15] Musa M., Ahmed I.M., Atakruni I.: Determination of bromate at trace level in Sudanese bottled drinking water using ion chromatography. E-Journal of Chemistry, vol. 1, 2010, pp. 283–293.
  • [16] Al-Omran A.M., El-Maghraby S.E., Aly A.A., Al-Wabel M.I., Al-Asmari Z.A., Nadeem M.E.: Quality assessment of various bottled waters marketed in Saudi Arabia. Environmental Monitoring and Assessment, vol. 185, 2013, pp. 6397–6406.
  • [17] Alsohaimi I.H., Alothman Z.A., Khan M.R., Abdalla M.A., Busquets R., Alomary A.K.: Determination of bromate in drinking water by ultraperformance liquid chromatography-tendem mass spectrometry. Journal of Separation Science, vol.35, no. 19, 2012, pp. 2538–2543.
  • [18] Khan M.R., Wabaidus S. M., Alothman Z.A., Busquets R., Naushad M.: Method for the fast determination of bromate, nitrate and nitrite by ultra performance liquid chromatography–mass spectrometry and their monitoring in Saudi Arabian drinking water with chemometric data treatment. Talanta, vol. 152, 2016, pp. 513–520.
  • [19] Kumar A., Rout S., Singhal R.K.: Health risk assessment for bromate (BrO3− ) traces in ozonated Indian bottled water. Journal of Environmental Protection, vol. 2, 2011, pp. 571–580.
  • [20] Saradhi L.V., Sharma S., Prathibha P., Pandit G.P.: Oxyhalide disinfection by-products in packaged drinking water and their associated risk. Current Science, vol. 108, no. 1, 2015, pp. 80–85.
  • [21] Ningnoi T., Puksun K., Jittiyodsara K.: Health Risk Assessment for bromate in bottled drinking water and natural mineral water. Bulletin of the Department of Medical Sciences, vol. 55, no. 3, 2013, pp. 161–175.
  • [22] Peng Y.E., Guo W., Zhang J., Guo Q., Jin L., Hu S.: Sensitive screening of bromate in drinking water by an improved ion chromatography ICP-MS method. Microchemical Journal, vol. 124, 2016, pp. 127–131.
  • [23] Wu Q., Zhang T., Sun H., Kannan K.: Perchlorate in tap water, ground water, surface waters, and bottled water from China and its association with other inorganic anions and with disinfection by products. Archives of Environmental Contamination and Toxicology, vol. 58, 2010, pp. 543–550.
  • [24] Ustawa z dnia 25 sierpnia 2006 r. o bezpieczeństwie żywności i żywienia. Dz.U. 2006, nr 171, poz. 1225.
  • [25] Rozporządzenie Ministra Zdrowia z dnia 7 grudnia 2017 r. w sprawie jakości wody przeznaczonej do spożycia przez ludzi. Dz.U 2017, poz. 2294.
  • [26] Latour T.: Kryteria oceny i wymagania dotyczące warunków produkcji i jakości wody w opakowaniach jednostkowych. Gaz, Woda i Technika Sanitarna, vol. 9, 2001, pp. 319–322.
  • [27] Rozporządzenie Ministra Zdrowia z dnia 31 marca 2011 r. w sprawie naturalnych wód mineralnych, naturalnych wód źródlanych i wód stołowych. Dz.U. 2011, nr 85, poz. 466.
  • [28] Kucharski M., Kurzyk R., Latour T., Mirko R.: Poradnik dobrej praktyki produkcyjnej i dobrej praktyki higienicznej w rozlewniach wód w opakowaniach. Warszawa 2007.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62b6f60c-7415-47ca-aaf3-e0f485ead0ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.