PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Equilibrium, kinetic and thermodynamic studies on methylene blue adsorption by Trichosanthes kirilowii Maxim shell activated carbon

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New kind of adsorbent was produced from Trichosanthes kirilowii Maxim shell. The KOH activation technology for preparation of Trichosanthes kirilowii Maxim shell activated carbon (TKMCK) was optimized. Using methylene blue as the sample adsorbate, the adsorption behavior was systematically investigated in terms of the activation agent and temperature, the adsorption temperature and time, the initial adsorbate pH and concentration, as well as the dosage of adsorbent. Surface physical morphology of the TKMCK prepared was observed by scanning electron microscopy (SEM), while the functional groups were determined with Fourier transform infrared (FTIR) spectra. Kinetic studies indicated that the adsorption process was more consistent with the pseudo-second-order kinetic. Both Langmuir and Freundlich isotherms were employed to fit the adsorption data at equilibrium, with the former giving a maximum adsorption capacity of 793.65 mg/g at 323 K. BET surface area of as-prepared TKMCK was 657.78 m2/g.
Rocznik
Strony
89--97
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Qingdao University, College of Mechanical and Electrical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao 266071, China
autor
  • Qingdao University, College of Mechanical and Electrical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao 266071, China
autor
  • Qingdao University, College of Mechanical and Electrical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao 266071, China
Bibliografia
  • 1. Esmaeili A. & Khoshnevisan N.(2016). Optimization of process parameters for remo val of heavy metals by biomass of Cu and Co-doped alginate-coated chitosan nanoparticles. Bioresour. Technol. 218 650–658. DOI: 10.1016/j.biortech.2016.07.005.
  • 2. Khasri A. & Ahmad M.A.(2018). Adsorption of basic and reactive dyes from aqueous solution onto Intsia bijuga sawdust-based activated carbon: batch and column study. Environ. Sci. Pollut. Res. 1–12. DOI: 10.1007/s11356-018-3046-3.
  • 3. Aroguz A.Z. Gulen J. & Evers R.H. (2008). Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment. Bioresour. Technol. 99 (6) 1503–1508. DOI: 10.1016/j.biortech.2007.04.033
  • 4. Bruggen B.V.D. Vandecasteele C. Gestel T.V. Doyen W. & Leysen R. (2010). A review of pressure – driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. Sustainable Energy 22 (1) 46–56. DOI: 10.1002/ep.670220116.
  • 5. Gogate P.R. & Pandit A.B. (2004).A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res.8 (3) 501–551. DOI: 10.1016/S1093-0191(03)00032-7.
  • 6. Li Q. Li Y. Ma X. Du Q. Sui K. Wang D. Wang C. Li H. & Xia Y.(2017). Filtration and adsorption properties of porous calcium alginate membrane for methylene blue removal from water. Chem. Eng. J. 316 623–630. DOI: 10.1016/j.cej.2017.01.098.
  • 7. Bulut Y. & Aydın H.(2006).A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194 (1) 259–267. DOI: 10.1016/j.desal.2005.10.032.
  • 8. Chen W. He F. Zhang S. Xv H. & Xv Z.(2018).Development of porosity and surface chemistry of textile waste jute-based activated carbon by physical activation. Environ. Sci. Pollut. Res. 25 (10) 9840–9848. DOI: 10.1007/s11356-018-1335-5.
  • 9. Bello O.S. & Ahmad M.A. (2011).Removal of Remazol Brilliant Violet-5R dye using periwinkle shells. Chem. Ecol. 27 (5) 481–492. DOI: 10.1080/02757540.2011.600696.
  • 10. Karaçetin G. Sivrikaya S. & Imamoğlu M. (2014). Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride. J. Anal. Appl. Pyrolysis 110 (1) 270–276. DOI: 10.1016/j.jaap.2014.09.006.
  • 11. Mohammad, M., Maitra, S. & Dutta, B.K.(2018). Comparison of activated carbon and physic seed hull for the removal of malachite green dye from aqueous solution. Water, Air, Soil Pollut., 229, (2), 45. DOI: 10.1007/s11270-018-3686-4.
  • 12. Monteiro M.S. De R.F. Chaves J. Santana S.A. Silva H. & Bezerra C. (2017). Wood (Bagassa guianensis Aubl) and green coconut mesocarp (cocos nucifera) residues as textile dye removers (Remazol Red and Remazol Brilliant Violet). J. Environ. Manage. 204 (Pt 1) 23–30. DOI: 10.1016/j.jenvman.2017.08.033.
  • 13. García J.R. Sedran U. Zaini M. A. & Zakaria Z. A.(2017).Preparation characterization and dye removal study of activated carbon prepared from palm kernel shell. Environ. Sci. Pollut. Res. 25 (1–3) 1–10. DO I: 10.1007/s11356-017-8975-8.
  • 14. Spagnoli A.A. Giannakoudakis D.A. & Bashkova S. (2017). Adsorption of methylene blue on cashew nut Shell based carbons activated with zinc chloride: The role of surface and structural parameters. J. Mol. Liq. 229, 465–471. DOI: 10.1016/j.molliq.2016.12.106.
  • 15. Khanday, W.A., Marrakchi, F., Asif, M. & Hameed, B.H. (2016).Mesoporous zeolite–activated carbon composite from oil palm ash as an effective adsorbent for methylene blue. J. Taiwan Inst. Chem. Eng. 70:3–41. DOI: 10.101 6/j.jtice.2016.10.029.
  • 16. Khasri A. Bello O.S. & Ahmad M.A.(2018).Mesoporous activated carbon from Pentace species sawdust via microwave-induced KOH activation: optimization and methylene blue adsorption. Res. Chem. Intermed. 1–21. DOI: 10.1007/s11164-018-3452-7.
  • 17. Miyah Y. Lahrichi A. Idrissi M. Khalil A. Zerrouq F. (2018). Adsorption of methylene blue dye from aqueous solutions onto walnut shells powder: equilibrium and kinetic studies. Surf. Interfaces 11. 74–81. DOI: 10.1016/j.surfin.2018.03.006.
  • 18. Malaika A. & Kozłowski M.(2011).Modification of activated carbon with different agents and catalytic performance of products obtained in the process of ethylbenzene dehydrogenation coupled with nitrobenzene hydrogenation. Chem. Eng. J. 171 (3) 1348–1355. DOI: 10.1016/j.cej.2011.05.046.
  • 19. Mckee D.W. (1982).Gasification of graphite in carbon dioxide and water vapor—the catalytic effects of alkali metal salts. Carbon 20 (1) 59–66. DOI: 10.1016/0008-6223(82)90075-6.
  • 20. Foo K.Y. & Hameed B.H. (2012).Coconut husk derived activated carbon via microwav e induced activation: Effects of activation agents preparation parameters and adsorption performance. Chem. Eng. J. 184 (2) 57–65. DOI: 10.1016/j.cej.2011.12.084.
  • 21. Shen F. Wang Y. Li L. Zhang K. Smith R.L. & Qi X.(2018).Porous carbonaceous materials from hydrothermal c arbonization and KOH activation of corn stover for highly efficient CO2 capture. Chem. Eng. Commun. 205 (4) 423–431. DOI: 10.1080/00986445.2017.1367671.
  • 22. Nikonenko N.A. Buslov D.K. Sushko N.I. & Zhbankov R.G.(2015).Investigation of stretching vibrations of glycosidic linkages in disaccharides and polysaccharides with use of IR spectra deconvolution.Biopolymers57(4)257–262.DOI: 10.1002/1097-0282(2000)57:4<257::AID-BIP7>3.0.CO;2-3
  • 23. Kemer B. Ozdes D. Gundogdu A. Bulut V.N. Duran C. & Soylak M.(2009).Removal of fluoride ions from aqueous solution by waste mud. J. Hazard. Mater. 168 (2) 888–894. DOI: 10.1016/j.jhazmat.2009.02.109.
  • 24. Wang S. Boyjoo Y. & Choueib A.(2005).A comparative study of dye removal using fly ash treated by different methods. Chemosphere 60(10) 1401–1407. DOI: 10.1016/j.chemosphere.2005.01.091.
  • 25. Vadivelan V. & Kumar K.V.(2005).Equilibrium kinetics mechanism and process design for the sorption of methylene blue onto rice husk. J. Colloid Interface Sci. 286 (1) 90–100. DOI: 10.1016/j.jcis.2005.01.007
  • 26. Magdy Y.H. & Daifullah A.A.M.(1998).Adsorption of a basic dye from aqueous solutions o nto sugar-industry-mud in two modes of operations. Waste Manage. 18 (4), 219–226. DOI: 10.1016/s0956-053x(98)00022-1.
  • 27. Hameed B.H. Din A.T.M. & Ahmad A.L.(2007). Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. J. Hazard. Mater. 141 (3) 819–825. DOI: 10.1016/j.jhazmat.2006.07.049.
  • 28. Rui M.N. Caetano A.P.F. Seabra M.P. Labrincha J.A. & Pullar R.C.(2018).Extremely fast and efficient methylene blue adsorption using eco-friendly cork and paper waste-based activated carbon adsorbents. J. Cleaner Prod. 197 1137–1147. DOI: 10.1016/j.jclepro.2018.06.278.
  • 29. Maguana Y.E. Elhadiri N. Bouchdoug M. & Benchanaa M. (2018).Study of the influence of some factors on the preparation of activated carbon from walnut cake using the fractional factorial design. J. Environ. Chem. Eng. 6 (1) 1093–1099. DOI: 10.1016/j.jece.2018.01.023.
  • 30. Auta M. & Hameed B.H. (2011).Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology. J. Cleaner Prod. 175 (8) 233–243. DOI: 10.1016/j.cej.2011.09.100.
  • 31. Dural, M.U., Cavas, L., Papageorgiou, S.K. & Katsaros, F.K. (2011).Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: Kinetics and equilibrium studies. Chem. Eng. J., 168, (1), 77–85. DOI: 10.1016/j.cej.2010.12.038.
  • 32. Altenor S. Carene B. Emmanuel E. Lambert J. Ehrhardt J.J. & Gaspard S.(2009). Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. J. Hazard. Mater. 165 (1) 1029–1039. DOI: 10.1016/j.jhazmat.2008.10.133.
  • 33. Tatycostodes V.C. Fauduet H. Porte C. & Delacroix A. (2003).Removal of Cd(II) and Pb(II) ions from aqueous solutions by adsorption onto sawdust of Pinus sylvestris. J. Hazard. Mater. 105 (1) 121–142. DOI: 10.1016/j.jhazmat.2003.07.009.
  • 34. Bhaumik R. Mondal N.K. & Das B.(2015).Eggshell Powder as an Adsorbent for Removal of Fluoride from Aqueous Solution: Equilibrium Kinetic and Thermodynamic Studies. J. Chem. 9 (3) 1457–1480. DOI: 10.1155/2012/790401.
  • 35. Silva J.P. Sousa S. Gonçalves I. Porter J.J. & Ferreira-Dias S.(2004).Modelling adsorption of acid orange 7 dye in aqueous solutions to spent brewery grains. Sep. Purif. Technol. 40 (3) 309–315. DOI: 10.1016/j.seppur.2004.02.006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62b48f83-fe48-42d2-b020-8a94c3b169a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.