Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the study was to evaluate the spatio-temporal dynamics of water temperature in the Wkra River catchment. Water temperature was monitored using digital recorders across 26 streams located in central Poland and representing small tributaries with variable catchment properties. On the basis of the measurement data collected during the hydrological year 2021, the spatial and seasonal variability of water temperature parameters was analyzed using statistical metrics and principal component analysis. Moreover, selected catchment and channel metrics in various spatial scales were combined with correlation analysis to assess their influence on monthly mean and maximum water temperature values. The results indicate significant spatial variability of water temperature in the Wkra River tributaries, creating a mosaic of thermal habitats. Seasonally, water temperature followed a sinusoidal pattern, while subdaily dynamics varied seasonally, with the highest values observed in spring and early summer. The mean and maximum water temperature values were related to environmental metrics mainly during the summer half-year; significant positive relationships were documented for the catchment area, whereas negative relationships were observed with channel gradient and riparian shade degree. In winter, only stream orientation demonstrated significant correlations. These findings are relevant in the context of anticipated changes in river thermal regime due to a climate warming effect, as well as setting new research issues; they also provide a unique basis in the context of fisheries management and land practices.
Czasopismo
Rocznik
Tom
Strony
3--12
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Geography and Regional Studies, University of Warsaw, Poland
autor
- Faculty of Geography and Regional Studies, University of Warsaw, Poland
autor
- Faculty of Geography and Regional Studies, University of Warsaw, Poland
autor
- Faculty of Geography and Regional Studies, University of Warsaw, Poland
autor
- Faculty of Geography and Regional Studies, University of Warsaw, Poland
autor
- Faculty of Geography and Regional Studies, University of Warsaw, Poland
Bibliografia
- 1. Bartnik, A. & Tomalski, P. (2018). Diurnal variations of the basic physico-chemical characteristics of a small urban river the Sokołówka in Łódź - a case study, Acta Scientiarum Polonorum Formatio Circumiectus, 17, 3, pp. 23-38. DOI:10.15576/ASP.FC/2018.17.3.23
- 2. Broadmeadow, S.B., Jones, J.G., Langford, T.E.L., Shaw, P.J. & Nisbet, T.R. (2011). The influence of riparian shade on lowland stream water temperatures in southern England and their viability for brown trout, River Research and Applications, 27, 2, pp. 226-237. DOI:10.1002/rra.1354
- 3. Caissie, D. (2006). The thermal regime of rivers: a review, Freshwater Biology, 51, 8, pp. 1389-1406. DOI:10.1111/j.1365-2427.2006.01597.x
- 4. Ciupa, T. & Suligowski, R. (2024). Land use in catchments of small streams and a hydrological urban heat Island a case study in Kielce city (Poland), Urban Water Journal, 21, 4, pp. 473-482. DOI:10.1080/1573062X.2024.2312504
- 5. Dugdale, S.J., Hannah, D.M. & Malcolm, I.A. (2017). River temperature modelling: A review of process-based approaches and future directions, Earth-Science Reviews, 175, pp. 97-113. DOI:10.1016/j.earscirev.2017.10.009
- 6. Elliott, J. & Elliott, J.A. (2010). Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change, Journal of Fish Biology, 77, 8, pp. 1793-1817. DOI:10.1111/j.1095-8649.2010.02762.x
- 7. Garner, G., Malcolm, I.A., Sadler, J.P. & Hannah, D.M. (2017). The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics, Journal of Hydrology, 553, pp. 471-485. DOI:10.1016/j.jhydrol.2017.03.024
- 8. Grabowski, Z.J., Watson, E. & Chang, H. (2016). Using spatially explicit indicators to investigate watershed characteristics and stream temperature relationships, Science of The Total Environment, 551–552, 1, pp. 376–386. DOI:10.1016/j.scitotenv.2016.02.042
- 9. Graf, R. & Wrzesiński, D. (2019). Relationship between water temperature of Polish rivers and large-scale atmospheric circulation, Water, 11, 8, 1690. DOI:10.3390/w11081690
- 10. Graf, R. & Wrzesiński, D. (2020). Detecting patterns of changes in river water temperature in Poland, Water, 12, 5, 1327. DOI:10.3390/w12051327
- 11. Hrachowitz, M., Soulsby, C., Imholt, C., Malcolm, I. A. & Tetzlaff, D. (2010). Thermal regimes in a large upland salmon river: a simple model to identify the influence of landscape controls and climate change on maximum temperatures, Hydrological Processes, 24, 23, pp. 3374-3391. DOI:10.1002/hyp.7756
- 12. Imholt, C., Soulsby, C., Malcolm, I.A., Hrachowitz, M., Gibbins, C.N., Langan, S. & Tetzlaff, D. (2013). Inluence of scale on thermal characteristics in a large montane river basin, River Research and Application, 29, 4, pp. 403-419. DOI:10.1002/rra.1608
- 14. Jackson, F.L., Hannah, D.M., Ouellet, V. & Malcolm, I.A. (2021). A deterministic river temperature model to prioritize management of riparian woodlands to reduce summer maximum river temperatures, Hydrological Processes, 35, 8, e14314. DOI:10.1002/hyp.14314
- 13. Isaak, D.J. & Hubert, W.A. (2001) A hypothesis about factors that affect maximum summer stream temperatures across montane landscapes, Journal of the American Water Resources Association, 37, 2, pp. 351-366. DOI:10.1111/j.1752-1688.2001.tb00974.x
- 15. Jackson, F.L., Malcolm, I.A. & Hannah, D.M. (2016). A novel approach for designing large-scale river temperature monitoring networks, Hydrology Research, 47, 3, pp. 569-590. DOI:10.2166/nh.2015.106
- 16. Kaczorowska, Z. (1962). Precipitation in Poland over many years, Przegląd Geograficzny IG PAN, 33, pp. 1-112. (in Polish)
- 17. Kail, J., Palt, M., Lorenz, A. & Hering, D. (2021). Woody buffer effects on water temperature: The role of spatial configuration and daily temperature fluctuations, Hydrological Processes, 35, 1 e14008. DOI:10.1002/hyp.14008
- 18. Kanno, Y., Vokoun, J.C. & Letcher, B.H. (2014). Paired streamair temperature measurements reveal fine-scale thermal heterogeneity within headwater brook trout stream networks, River Research and Applications, 30, 6, pp. 745–755. DOI:10.1002/rra.2677
- 19. Łaszewski, M. (2020). The effect of environmental drivers on summer spatial variability of water temperature in Polish lowland watercourses, Environmental Earth Sciences, 79, 244, pp. 1-15. DOI:10.1007/s12665-020-08981-w
- 20. Malcolm, L.A., Hannah, D.M., Donaghy, M.J., Soulsby, C. & Youngson, A.F. (2004). The influence of riparian woodland on the spatial and temporal variability of stream water temperatures in an upland salmon stream, Hydrology and Earth System Sciences, 8, 3, pp. 449-459
- 21. Marszelewski, W., Jokiel, P., Pius, B. & Tomalski, P. (2022). River thermal seasons in the Central European Plain and their changes during climate Warming, Journal of Hydrology, 610, 127945. DOI:10.1016/j.jhydrol.2022.127945
- 22. Marszelewski, W. & Pius, B. (2016). Long-term changes in temperature of river waters in the transitional zone of the temperate climate: a case study of Polish rivers, Hydrological Sciences Journal, 61, 8, pp. 1430–1442. DOI:10.1080/02626667.2015.1040800
- 23. Miętus, M., Owczarek, M. & Filipiak J. (2002). Thermal conditions in the area of the Coast and Pomerania in the light of selected classifications, Materiały Badawcze IMGW, Seria Meteorologia, 36. (in Polish)
- 24. Moore, R.D., Spittlehouse, D.L. & Story, A. (2005). Riparian microclimate and stream temperature response to forest harvesting: a review, Journal of the American Water Resources Association, 41, 4, pp. 813-834
- 25. Poole, G.C. & Berman, C.H. (2001). Pathways of human influence on water temperature dynamics in stream channels, Environmental Management, 27, 6, pp. 787-802
- 26. Solomon, D.J. & Lightfoot, G.W. (2008). The thermal biology of brown trout and Atlantic salmon, Environment Agency Science Report
- 27. Sweeney, B. W. & Newbold, J. D. (2014). Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: a literature review, JAWRA Journal of the American Water Resources Association, 50, 3, pp. 560-584. DOI:10.1111/jawr.12203
- 28. Szarek-Gwiazda, E. & Gwiazda, R. (2022). Impact of flow and damming on water quality of the mountain Raba River (southern Poland) long-term studies, Archives of Environmental Protection, 48, 1, pp. 31–40. DOI:10.24425/aep.2022.140543
- 29. Tomczyk, P. & Wiatkowski, M. (2020). Shaping changes in the ecological status of watercourses within barrages with hydropower schemes literature review, Archives of Environmental Protection, 46, 4, pp. 78–94. DOI:10.24425/aep.2020.135767
- 30. Wrzesiński, D. (2017). Typology of river runoff regime in Poland in the supervised and unsupervised approach, Badania Fizjograficzne, 8, 68, pp. 253-264. DOI:10.14746/bfg.2017.8.19 (in Polish)
- 31. Yang, R., Wu, S., Wu, X., Ptak, M., Li, X., Sojka, M., Graf, R., Jiangyu, D. & Zhu, S. (2022). Quantifying the impacts of climate variation, damming, and flow regulation on river thermal dynamics: a case study of the Włocławek Reservoir in the Vistula River, Poland, Environmental Sciences Europe, 34, 1, pp. 1-11. DOI:10.1186/s12302-021-00583-y
- 32. Żelazny, M., Rajwa-Kuligiewicz, A., Bojarczuk, A. & Pęksa, Ł. (2018). Water temperature fluctuation patterns in surface waters of the Tatra Mts., Poland. Journal of Hydrology, 564, pp. 824–835. DOI:10.1016/j.jhydrol.2018.07.051
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62ad47d0-3e80-4a24-a592-db2b5aca20f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.