PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanosatellite Attitude Estimation from Vector Measurements Using SVD-Aided UKF Algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The integrated Singular Value Decomposition (SVD) and Unscented Kalman Filter (UKF) method can recursively estimate the attitude and attitude rates of a nanosatellite. At first, Wahba’s loss function is minimized using the SVD and the optimal attitude angles are determined on the basis of the magnetometer and Sun sensor measurements. Then, the UKF makes use of the SVD’s attitude estimates as measurement results and provides more accurate attitude information as well as the attitude rate estimates. The elements of “Rotation angle error covariance matrix” calculated for the SVD estimations are used in the UKF as the measurement noise covariance values. The algorithm is compared with the SVD and UKF only methods for estimating the attitude from vector measurements. Possible algorithm switching ideas are discussed especially for the eclipse period, when the Sun sensor measurements are not available.
Słowa kluczowe
Rocznik
Strony
113--125
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Istanbul Technical University, Faculty of Aeronautics and Astronautics, Maslak, 34469, Istanbul, Turkey
autor
  • Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara, Japan
autor
  • Istanbul Technical University, Faculty of Aeronautics and Astronautics, Maslak, 34469, Istanbul, Turkey
Bibliografia
  • [1] Vinther, K., Jensen, K.F., Larsen, J.A., Wisniewski, R. (2011). Inexpensive cubesat attitude estimation using quaternions and unscented Kalman filtering. Automatic Control in Aerospace, 4(1).
  • [2] Springmann, J.C., Cutler, J.W. (2014). Flight results of a low-cost attitude determination systems. Acta Astronautica, 99, 201-204.
  • [3] Markley, F.L. (1999). Attitude determination using two vector measurements. Flight Mechanics Symposium, 39−52, Goddard Space Flight Center, Greenbelt, MD.
  • [4] Cordova-Alarcon, J.R., Mendoza-Barcenas, M.A., Solis-Santome, A. (2015). Attitude Determination System Based on Vector Observations for Satellites Experiencing Sun-Eclipse Phases. Multibody Mechatronic Systems, Springer International Publishing, 75-85.
  • [5] Psiaki, M.L. (1989). Three-axis attitude determination via Kalman filtering of magnetometer data. Journal of Guidance, Control and Dynamics, 13(3), 506-514.
  • [6] Sekhavat, P., Gong, Q., Ross, I.M. (2007). NPSAT I parameter estimation using unscented Kalman filter. Proc. 2007 American Control Conference, New York, USA, 4445-451.
  • [7] Cilden, D., Hajiyev, C. (2015). Error Analysis of the Vector Measurements Based Attitude Determination Methods for Small Satellites. International Symposium on Space Technology and Science (ISTS), Kobe, Hyogo, Japan.
  • [8] Hajiyev, C., Bahar, M. (2003). Attitude determination and control system design of the ITU-UUBF LEO1 satellite. Acta Astronautica, 52(2-6), 493-499.
  • [9] Mimasu, B.Y., Van der Ha, J.C., Narumi, T. (2008). Attitude determination by magnetometer and gyros during eclipse. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, USA.
  • [10] Mimasu, B.Y., Van der Ha, J.C. (2009). Attitude determination concept for QSAT. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 7, 63-68.
  • [11] Quan, W., Xu, L., Zhang, H., Fang, J. (2013). Interlaced Optimal-REQUEST and unscented Kalman filtering for attitude determination. Chinese Journal of Aeronautics, 26(2), 449-155.
  • [12] de Marina, H.G., Espinosa, F., Santos, C. (2012). Adaptive UAV Attitude Estimation Employing Unscented Kalman Filter, FOAM and Low-Cost MEMS Sensors. Sensors, 12(7), 9566-9585.
  • [13] Christian, J.A., Lightsey, E.G. (2010). Sequential optimal attitude recursion filter. Journal of Guidance, Control, and Dynamics, 33(6), 1787-1800.
  • [14] Ainscough, T., Zanetti, R. (2014). Q-Method extended Kalman filter. Journal of Guidance, Control, and Dynamics.
  • [15] Cilden, D., Hajiyev, C., Soken, H.E. (2015). Attitude and Attitude Rate Estimation for a Nanosatellite Using SVD and UKF. Recent Advances in Space Technologies, Istanbul, Turkey.
  • [16] Wertz, J.R. (1988). Spacecraft Attitude Determination and Control. Dordrecht, Holland: Kluwer Academic Publishers.
  • [17] Alonso, R., Shuster, M.D. (2002). Complete linear attitude-independent magnetometer calibration. Journal of Astronautical Sciences, 50, 477-490.
  • [18] Soken, H.E., Hajiyev, C. (2012). UKF-Based reconfigurable attitude parameters estimation and magnetometer calibration. IEEE Transactions on Aerospace and Electronic Systems, 48(3), 2614-2627.
  • [19] Finlay, C., Maus, S., Beggan, C.D., Bondar, T.N., et al. (2010). International Geomagnetic Reference Field: the eleventh generation. Geophysical Journal International, 183, 1216-1230.
  • [20] Vallado, D.A. (2007). Fundamentals of Astrodynamics and Applications. Space Technology Library. USA: Microcosm Press/Springer, 21.
  • [21] Wahba, G. (1965). Problem 65−1: A Least Squares Estimate of Satellite Attitude. Society for Industrial and Applied Mathematics Review, 7(3), 409.
  • [22] Markley, F.L., Mortari, D. (2000). Quaternion attitude estimation using vector observations. Journal of the Astronautical Sciences, 48(2-3), 359-380.
  • [23] Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.F. (1995). A new approach for filtering nonlinear systems. American Control Conference, Seattle, USA. 1628-1632.
  • [24] Crassidis, J.L., Markley, F.L. (2003). Unscented filtering for spacecraft attitude estimation. Journal of Guidance Control and Dynamics, 26(4), 536-542.
  • [25] Oshman, Y., Dellus, F. (2003). Spacecraft angular velocity estimation using sequential observations of a single directional vector. Journal of Spacecraft and Rockets, 40(2), 234-247.
Uwagi
EN
The work was supported by TUBITAK (The Scientific and Technological Research Council of Turkey), Grant 113E595.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62acefeb-3344-4732-9a87-c2bade05a18d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.