PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biosorption of aniline blue from aqueous solution using a novel biosorbent Zizyphus oenoplia seeds: Modeling studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the feasibility for the removal of Aniline Blue dye (AB dye) from aqueous solution using a low cost biosorbent material Zizyphus oenoplia seeds. In this study, a batch mode experiments of the adsorption process were carried out as a function of pH, contact time, concentration of dye, adsorbent dosage and temperature. The experimental data were fitted with Freundlich and Langmuir isotherm equations. The feasibility of the isotherm was evaluated with dimensionless separation factor (RL). The kinetic data of sorption process are evaluated by using pseudo-first order and pseudo-second order equations. The mode of diffusion process was evaluated with intra-particle diffusion model. The thermodynamic parameters like change in enthalpy (ΔHº); change in entropy (ΔSº) and Gibbs free energy change (ΔGº) were calculated using Van’t Hoff plot. The biosorbent material was characterized with Fourier Transform Infrared (FTIR) spectroscopy and the morphology was identified with Scanning Electron Microscope (SEM) in before and after adsorption of AB dye.
Słowa kluczowe
Rocznik
Strony
70--77
Opis fizyczny
Bibliogr. 35 poz., rys., wykr., wz.
Twórcy
autor
  • Anna University Chennai: University College of Engineering Pattukottai, Department of Chemistry, Rajamadam-614 701, India
autor
  • Anna University Chennai: University College of Engineering Pattukottai, Department of Civil Engineering, Rajamadam-614 701, India
  • Anna University Chennai: University College of Engineering Pattukottai, Department of Chemistry, Rajamadam-614 701, India
  • Arignar Anna Government Arts College, Department of chemistry, Musiri-621 211, India
  • Anna University Chennai: University College of Engineering Pattukottai, Department of Mechanical Engineering, Rajamadam-614 701, India
  • Anna University Chennai: University College of Engineering Pattukottai, Department of Physics, Rajamadam-614 701, India
Bibliografia
  • 1. Aksu, Z., TatlI, A.I. & Tunc, O. (2008). A comparative adsorption/biosorption study of Acid Blue 161: Effect of temperature on equilibrium and kinetic parameters, Chem. Eng. J. 142, 23–39. http://dx.doi.org/10.1016/j.cej.2007.11.005
  • 2. Bhatanagar, A. & Jain, A. (2005). A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water”, J. Coll. Inter. Sci., 28, 49–55. http://dx.doi.org/10.1016/j.jcis.2004.08.076
  • 3. Tan, B.H., Teng, T.T., Mohd, A.K. & Omar, M. (2000). Removal of dyes and industrial dye wastes by magnesium chloride. Water Res. 34, 597–601. http://dx.doi.org/10.1016/S0043-1354(99)00151-7
  • 4. Liua, C.H., Wua, J.S., Chiua, H.C., Suena, S.Y. & Chub, K.H. Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers, Water Res. 41(7), 1491, (2007). http://dx.doi.org/10.1016/j.watres.2007.01.023
  • 5. Tuteja, R., Kaushik, N., Kaushik, C.P. & Sharma, J.K. (2010). Recovery of Reactive (Triazine) Dyes from Textile Effluent by Solvent Extraction Process. Asian J. Chem. 22, 539–545. http://asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=22_1_74
  • 6. Simonic, M. (2009). Efficiency of ultrafiltration for the pre-treatment of dye-bath effluents. Desalination. 246, 328–334. DOI: 10.1016/j.desal.2009.02.040.
  • 7. Chatzisymeon, E., Xekoukoulotakis, N.P., Coz, A., Kalogerakis, N. & Mantzavinos, D. (2006). Electrochemical treatment of textile dyes and dyehouse effluents Efthalia Chatzisymeon. J. Hazard. Mater 137(2), 998–1007. http://dx.doi.org/10.1016/j.jhazmat.2006.03.032
  • 8. Ansari, R. & Mosayebzadeh, Z. (2010). Removal of Basic Dye Methylene Blue from Aqueous Solutions Using Sawdust and Sawdust Coated with Polypyrrole. J. Iranian Chem. Soc. 7(2), 339–350. DOI: 10.1007/BF03246019.
  • 9. Bai, S.R.T. & Abraham, E. (2001). Biosorption of Cr (VI) from aqueous solution by rhizopus nigricans. Biores. Tech. 79, 1, 73–81. http://dx.doi.org/10.1016/S0960-8524(00)00107-3
  • 10. Forgacs, E., Cserhati, T. & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review, Environ. Int. 30(7), 953–971. http://dx.doi.org/10.1016/j.envint.2004.02.001
  • 11. Irani, M. Amjadi, M. & Mousavian, M.A. (2011). Comparative study of lead sorption onto natural perlite, dolomite and diatomite, Chem. Eng. J. 178, 317–323. http://dx.doi.org/10.1016/j.cej.2011.10.011
  • 12. Alver, E. & Metin, A.U. (2012). Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies, Chem. Eng. J. 15, 59–67. http://dx.doi.org/10.1016/j.cej.2012.06.038
  • 13. Rauf, M.A., Qadri, S.M., Ashraf, S. & Al Mansoori, K.M. (2009). Adsorption studies of toluidine Blue from aqueous solutions onto gypsum, Chem. Engg. J. 150, 90–95. http://dx.doi.org/10.1016/j.cej.2008.12.008
  • 14. Kumar, M. & Tamilarasan, R. (2013). Kinetics and Equilibrium Studies on the Removal of Victoria Blue Using Prosopis juliflora-Modified Carbon/Zn/Alginate Polymer Composite Beads. J. Chem. Eng. Data. 58, 517–527. http://dx.doi.org/10.1021/je3012309
  • 15. Kumar, M., Tamilarasan, R. & Sivakumar, V. (2013). Adsorption of Victoria blue by carbon/Ba/alginate beads: Kinetics, thermodynamics and isotherm studies. Carbohydrate Poly. 98, 505–513. http://dx.doi.org/10.1016/j.carbpol.2013.05.078
  • 16. Agarwal, G.S., Bhuptawat, H.K. & Chaudhari, S. (2006). Biosorption of aqueous chromium (VI) by Tamarindus indica seeds. Biores. Tech. 97(7), 949–956. http://dx.doi.org/10.1016/j.biortech.2005.04.030
  • 17. Loukidou, M.X., Zouboulis, A.I., Karapantsios, T.D. & Matis, K.A. (2004). Equilibrium and Kinetic modeling of chromium(VI) biosorption by Aeromonas caviae. Colloids and Surfaces A: Phys. Eng. Aspec. 242, 93–104. http://dx.doi.org/10.1016/j.colsurfa.2004.03.030
  • 18. Saha, P., Chowdhury, S., Gupta, S., Kumar, I. & Kumar, R. (2010). Assessment on the Removal of Malachite Green Using Tamarind Fruit Shell as Biosorbent. CLEAN Soil, Air, Water. 38(5–6), 437–445. DOI: 10.1002/clen.200900234.
  • 19. Kapur, M. & Mondal, M.K. (2013). Mass transfer and related phenomena for Cr(VI) adsorption from aqueous solutions onto Mangifera indica sawdust. Chem. Eng. J. 218, 138–146. http://dx.doi.org/10.1016/j.cej.2012.12.054
  • 20. Mohanty, K., Das, D. & Biswas, M.N. (2005). Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Chem. Eng. J. 115, 1–2 121–131. http://dx.doi.org/10.1016/j.cej.2005.09.016
  • 21. Wang, S., Ma, Q. & Zhu, Z.H. (2008). Characteristics of coal fly ash and adsorption application. Fuel. 87, 3469–3473. http://dx.doi.org/10.1016/j.fuel.2008.05.022
  • 22. Kumar, M. & Tamilarasan, R. (2013). Modeling of experimental data for the adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Prosopis juliflora. Pol. J. Chem. Tech., Vol. 15(1), 29–39. http://www.degruyter.com/view/j/pjct.2013.15.issue-2/pjct-2013-0021/pjct-2013-0021.xml?format=INT
  • 23. Sureshkumar, M.V. & Namasivayam, C. (2008). Adsorption behavior of Direct Red 12B and Rhodamine B from water onto surfactant-modified coconut coir pith. Colloids and Surfaces A: Phys. Eng. Asp. 317 (1–3) 277–283. http://dx.doi.org/10.1016/j.colsurfa.2007.10.026
  • 24. Tanyildizi, M.S. (2011). Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull. Chem. Eng. J. 168, 1234–1240. http://dx.doi.org/10.1016/j.cej.2011.02.021
  • 25. Langmuir, I. (1918). The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • 26. Ofomaja, A.E. (2008). Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdus, Chem. Eng. J. 143, 85–95. http://dx.doi.org/10.1016/j.cej.2007.12.019.
  • 27. Freundlich, H.M.F. (1906). Uber die adsorption in losungen. Zeitschrift fur Physikalische Chemie. 57, 385–470.
  • 28. McKay, G., Blair, H.S. & Gardener, J.R. (1982). Adsorption of dyes on chitin. I. Equilibrium studies. J. App. Polymer Sci. 27, 3043–3057. DOI: 10.1002/app.1982.070270827.
  • 29. Lagergren, S. & Svenska, B.K. (1898). Zur theorie der sogenannten adsorption geloester stoffe. Veternskapsakad Handlingar, 24 1–39. http://www.biodiversitylibrary.org/item/48741
  • 30. Ho, Y.S. & McKay, G. (1998). Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Proc. Saf. Environ. Prot. 76, 83–191. DOI: 10.1205/095758298529326.
  • 31. Ho, Y.S. & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465. http://dx.doi.org/10.1016/S0032-9592(98)00112-5
  • 32. Weber, W.J. & Morris, J.C. (1963). Kinetics of adsorption on carbon from solution. J. Sanitation Eng. Division Am. Soc. Civil Eng. 89, 31–60. http://cedb.asce.org/cgi/WWWdisplay.cgi?13042
  • 33. Toor, M. & Jin, B. (2012). Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chem. Eng. J. 187, 79–88. http://dx.doi.org/10.1016/j.cej.2012.01.089
  • 34. Hameed, B.H., Ahmad, A.A. & Aziz, N. (2007). Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem. Eng. J. 133, 195–203. http://dx.doi.org/10.1016/j.cej.2007.01.032
  • 35. Kayranli, B. (2011). Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution; isotherm, kinetic and thermodynamic study. Chem. Eng. J. 173, 782–791. http://dx.doi.org/10.1016/j.cej.2011.08.051
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62a70162-a8f1-4d4c-af02-836529881f41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.