PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of austempering temperature on microstructure and cyclic deformation behaviour of multiphase low-carbon steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper examined the cyclic deformation behaviour of multiphase low-carbon steel that was subjected to austempering heat treatments at four temperatures (190 °C, 230 °C, 275 °C, and 315 °C) below the martensite start temperature (Ms = 353 °C). The tests were conducted at room temperature, under fully reversed strain-controlled conditions, with strain amplitudes in the range 0.5–1.0%. The microstructure was observed by transmission electron microscopy, and the fracture surfaces were examined by scanning electron microscopy. The steel had a bainite/martensite microstructure, with increasing bainite content for higher austempering temperatures. Irrespective of the tested conditions, it strain-hardened during the first two cycles and then, strain-softened until failure. The austempering temperature did not significantly affect the stress-based, strain-based and energy-based relationships. However, lower austempering temperatures slightly improved the fatigue performance.
Rocznik
Strony
art. no. e201, 2023
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
  • State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
  • Guangzhou University of Navigation, Guangzhou 510725, Guangdong, China
autor
  • Department of Mechanical Engineering, CEMMPRE, University of Coimbra, Rua Luis Reis Santos, 3030-788 Coimbra, Portugal
autor
  • Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, 11/12 Gabriela Narutowicza, 80-233 Gdansk, Poland
  • Faculty of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, China
autor
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
autor
  • School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
autor
  • Department of Mechanical Engineering, CEMMPRE, University of Coimbra, Rua Luis Reis Santos, 3030-788 Coimbra, Portugal
Bibliografia
  • 1. Caballero FG, Bhadeshia HKDH. Very strong bainite. Curr Opin Solid State Mater Sci. 2004;8:251–7.
  • 2. Speer J, Matlock DK, Cooman BCD, Schroth JG. Carbon partitioning into austenite after martensite transformation. Acta Mater. 2003;51:2611–22.
  • 3. Long XY, Zhang FC, Zhang CY. Effect of Mn content on low- cycle fatigue behaviors of low-carbon bainitic steel. Mater Sci Eng A. 2017;697:111–8.
  • 4. Wang X, Liu C, Qin Y, Li Y, Yang Z, Long X, Wang M, Zhang FC. Effect of tempering temperature on microstructure and mechanical properties of nanostructured bainitic steel. Mater Sci Eng A. 2022;832: 142357.
  • 5. Gao GH, Zhang H, Tan ZL, Liu WB, Bai BZ. A carbide-free bainite/martensite/austenite triplex steel with enhanced mechanical properties treated by a novel quenching-partitioning-tempering process. Mater Sci Eng A. 2013;559:165–9.
  • 6. Zhang J, Ding H, Misra RDK, Wang C. Enhanced stability of retained austenite and consequent work hardening rate through pre-quenching prior to quenching and partitioning in a Q-P micro- alloyed steel. Mater Sci Eng A. 2014;611:252–6.
  • 7. Gao GH, Zhang H, Gui XL, Luo P, Tan ZL, Bai BZ. Enhanced ductility and toughness in an ultrahigh-strength Mn-Si-Cr-C steel: the great potential of ultrafine filmy retained austenite. Acta Mater. 2014;76:425–33.
  • 8. Wang XD, Zhong N, Rong YH, Hsu TY. Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process. J Mater Res. 2009;24:260–7.
  • 9. Zhao LJ, Qian LH, Meng JY, Zhou Q, Zhang FC. Below-Ms austempering to obtain refined bainitic structure and enhanced mechanical properties in low-C high-Si/Al steels. Scr Mater. 2016;112:96–100.
  • 10. Yang ZN, Zhang FC, Ji YL, Wang YH, Lv B, Wang ML. Notably improved mechanical properties via introducing a short austempering treatment on lowcarbon martensite steel. Mater Sci Eng A. 2016;673:524–9.
  • 11. Silva EPD, Xu W, Föjer C, Houbaert Y, Sietsma J, Petrov RH. Phase transformations during the decomposition of austenite below Ms in a low-carbon steel. Mater Charact. 2014;95:85–93.
  • 12. Samanta S, Biswas P, Giri S, Singh SB, Kundu S. Formation of bainite below the Ms temperature: kinetics and crystallography. Acta Mater. 2016;105:390–403.
  • 13. Zhao X, Zhang FC, Yang Z, Zhao J. Cyclic deformation behav- ior and microstructure evolution of high-carbon nano-bainitic steel at different tempering temperatures. Mater Sci Eng A. 2019;751:323–31.
  • 14. Yang G, Xia SL, Zhang FC, Branco R, Long XY, Li YG, Li JH. Effect of tempering temperature on monotonic and low-cycle fatigue properties of a new low-carbon martensitic steel. Mater Sci Eng A. 2021;826: 141939.
  • 15. Kumar A, Blessto B, Singh A. Effect of austempering temperature on high cycle fatigue behaviour in nanostructured bainitic steels. Mater Sci Eng A. 2022;846: 143269.
  • 16. Deng QY, Zhu SP, He JC, Li XK, Carpinteri A. Multiaxial fatigue under variable amplitude loadings: review and solutions. Int J Struct Integr. 2022;13:349–93.
  • 17. Lv B, Xia S, Zhang FC, Yang G, Long XL. Comparison of novel low-carbon martensitic steel to maraging steel in low-cycle fatigue behavior. Coatings. 2022;12:818.
  • 18. Xia S, Zhang FC, Yang Z. Microstructure and mechanical properties of 18Mn3Si2CrMo steel subjected to austempering at different temperatures below Ms. Mater Sci Eng A. 2018;724:103–11.
  • 19. Plumtree A, Abdel-Raouf HA. Cyclic stress–strain response and substructure. Int J Fat. 2001;23:799–805.
  • 20. ASTM E606. Standard Test Method for Strain-Controlled Fatigue Testing. Standard Test Method for Strain-Controlled Fatigue Testing. (2021).
  • 21. Liu D, Bai B, Fang H, Zhang W, Gu J, Chang K. Effect of tem- pering temperature and carbide free bainite on the mechanical characteristics of a high strength low alloy steel. Mater Sci Eng A. 2004;371:40–4.
  • 22. Hilditch T, Beladi H, Hodgson P, Stanford N. Role of microstructure in the low cycle fatigue of multi-phase steels Mater. Sci Eng A. 2012;534:288–96.
  • 23. Ellyin F. Fatigue Damage, Crack Growth and Life Prediction, 1st ed. Chapman & Hall: London; 1997. ISBN 0-412-59600-8.
  • 24. Ramberg W, Osgood WR. Description of stress-strain curves by three parameters. NACA TN 902 (1943) National Advisory Committee for Aeronautics.
  • 25. Masing G. Eigenspannungen und verfestigung beim messing. In: Proceedings of the 2nd International Congress of Applied Mechanics. Zurich: Orell Fussliverlag; 1926. p. 332–5.
  • 26. Bai FM, Zhou HW, Liu XH, Song M, Yi Y-X, Huang Z-Y. Masing behavior and microstructural change of quenched and tempered high-strength steel under low cycle. Fatigue Acta Metall Sin. 2019;32:1346–54.
  • 27. Xia S, Zhang FC, Yang Z. Cyclic deformation behaviours of 18Mn3Si2CrNiMo multiphase (martensite/bainite/retained austensite) steel. Mater Sci Eng A. 2019;74:64–73.
  • 28. Basquin OH. The exponential law of endurance tests. Am Soc Test Mater ASTM. 1910;10:625–30.
  • 29. Coffin LF. A study effects of cyclic thermal stresses on ductile metal. Trans ASME. 1954;76:931–50.
  • 30. Manson SS. Behaviour of materials under conditions of thermal stress. NACA TN-2933 (1954) National Advisory Committee for Aeronautics.
  • 31. Lesiuk G, Szata M, Rozumek D, Marciniak Z, Correia J, Jesus A. Energy response of S355 and 41Cr4 steel during fatigue crack growth process. J Strain Anal Eng Des. 2018;53:663–75.
  • 32. Zhu S-P, Liu Y, Liu Q, Yu Z-Y. Strain energy gradient-based LCF life prediction of turbine discs using critical distance concept. Int J Fat. 2018;113:33–42.
  • 33. Smith R, Watson P, Topper T. A stress-strain parameter for the fatigue of metals. J Mater. 1970;5:767–78.
  • 34. Liu K. A method based on virtual strain-energy parameters for multiaxial fatigue life prediction. In McDowell D, Ellis J, editors. Advances in Multiaxial Fatigue, 1st ed. ASTM International: West Conshohocken; 1993. p. 67–84.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62a41663-6032-4180-9d52-b899418a890c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.