PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of heating rate and solvent on Ni-based catalysts prepared by solution combustion method for syngas methanation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation were enhanced by employing various heating rate and different solvent. The catalytic properties were tested in syngas methanation. The result indicates that both of heating rate and solvent remarkably affect Ni particle size, which is a key factor to the catalytic activity of Ni-Al2O3 catalysts for syngas methanation. Moreover, the relationship between Ni particle size and the production rate of methane per unit mass was correlated. The optimal Ni-Al2O3 catalyst prepared in ethanol at 2°C/min, achieves a maximum production rate of methane at the mean size of 20.8 nm.
Rocznik
Strony
95--100
Opis fizyczny
Bibliogr. 24 poz., rys., tab., zdj.
Twórcy
autor
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, Shanghai, China 200237
autor
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, Shanghai, China 200237
autor
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, Shanghai, China 200237
autor
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, Shanghai, China 200237
autor
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, Shanghai, China 200237
Bibliografia
  • 1. Kopyscinski, J., Schildhauer, T.J. & Biollaz, S.M.A. (2010). Production of synthetic natural gas (SNG) from coal and dry biomass-A technology review form 1950 to 2009. Fuel. 89(8), 1763–1783. DOI: 10.1016/j.fuel.2010.01.027.
  • 2. Gao, J.J., Wang, Y.L., Ping, Y., Hu, D.C., Xu, G.W., Gu, F.N. & Su, F.B. (2012). A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv. 2(6), 2358–2368. DOI:10.1039/c2ra00632d.
  • 3. Xavier, K.O., Sreekala, R., Rashid, K.K.A., Yusuf, K.K.M. & Sen, B. (1999). Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation. Catal. Today. 49(1–3), 17–21. DOI:10.1016/S0920-5861(98)00403-9.
  • 4. Derekaya, F.B. & Yasar, G. (2011). The CO methanation over NaY-zeolite supported Ni/Co3O4, Ni/ZrO2, Co3O4/ ZrO2 and Ni/Co3O4/ZrO2 catalysts. Catal. Commun. 13(1), 73–77. DOI: 10.1016/j.catcom.2011.06.024.
  • 5. Kopyscinski, J., Schildhauer, T.J. & Biollaz, S.M.A. (2011). Fluidized-Bed methanation: Interaction between kinetics and mass transfer. Ind. Eng. Chem. Res. 50(5), 2781–2790. DOI:10.1021/ie100629k.
  • 6. Duan, X.Z., Qian, G., Zhou, X.G., Sui, Z.J., Chen, D. & Yuan, W.K. (2011). Tuning the size and shape of Fe nanoparticles on carbon nanofi bers for catalytic ammonia decomposition. Appl. Catal. B: Environ. 101(3–4), 189–196. DOI: 10.1016/j.apcatb.2010.09.017.
  • 7. Utaka, T., Takeguchi, T., Kikuchi, R. & Eguchi, K. (2003). CO removal from reformed fuels over Cu and precious methal catalysts. Appl. Catal. A: Gen. 246(1), 117–124. DOI: 10.1016/S0926-860X(03)00048-6.
  • 8. Vannice, M.A. (1975). The catalytic synthesis of hydrocarbons form H2/CO mixtures over the group VIII methas: 1. The specifi c activities and product distributions of supported metals. J. Catal. 37(3), 449–461. DOI: 10.1016/002149517(75)90181-5.
  • 9. Kim, S.H., Lee, W.D. & Lee, H.I. (2013). Effect of CeO2 on CO removal over CeO2-modifi ed Ni catalyst in CO-rich syngas. Korean J. Chem. Eng. 30(4), 860–863. DOI: 10.1007/s11814-013-0007-x.
  • 10. Wieslawa, C.B. (2013). Infl uence of the exchanged metalions (Cu, Co, Ni and Mn) on the selective catalytic reduction of NO with hydrocarbons over modifi ed ferrierite. Pol. J. Chem. Tech. 15(2), 10–15. DOI: 10.2478/pjct-2013-0018.
  • 11. Shi, P. & Liu, C.J. (2009). Characterization of silica supported nickel catalyst for methanation with improved activity by room temperature plasma treatment. Catal. Lett. 133(1–2), 112–118. DOI: 10.1007/s10562-009-0163-0.
  • 12. Zhao, A.M., Ying, W.Y., Zhang, H.T., Ma, H.F. & Fang, D.Y. (2012). Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation. Catal. Commun. 17, 34–38. DOI: 10.1016/j.catcom.2011.10.010.
  • 13. Zhang, J., Xu, H.Y., Jin, X.L., Ge, Q.J. & Li, W.Z. (2005). Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts for NH3 decomposition. Appl. Catal. A: Gen. 290(1–2), 87–96. DOI: 10.1016/j.apcata.2005.05.020.
  • 14. Guimon, C., Auroux, A., Romero, E. & Monzon, A. (2003). Acetylene hydrogenation over Ni-Si-Al mixed oxides prepared by sol-gel technique. Appl. Catal. A: Gen. 251(1), 199–214. DOI: 10.1016/S0926-860X(03)00318-1.
  • 15. Zhang, Y.H., Xiong, G.X., Sheng, S.S., Liu, S.L. & Yang, W.S. (1999). Interaction of NiO with γ–Al2O3 supporter of NiO/γ-Al2O3 catalysts. Acta Phys. Chem. Sim. (Wuli Huaxue Xuebao) 15(8), 735–741. DOI:10.3866/PKU.WHXB19990813.
  • 16. Rynkowski, J.M., Paryjczak, T. & Lenik, M. (1993). On the nature of oxidic nickel phases in NiO/ γ–Al2O3 catalysts. Appl. Catal. A: Gen. 106(1), 73–82. DOI: 10.1016/0926-860X(93)80156-K.
  • 17. Vos, B., Poels, E. & Bliek, A. (2001). Impact of calcination conditions on the structure of alumina-supported Nikel particles. J. Catal. 198(1), 77–88. DOI: 10.1006/jcat.2000.3082.
  • 18. Zou, X.J., Wang, X.G. & Li, L. (2010). Development of highly effective supported nickel catalysts for pre-reforming of liquefi ed petroleum gas under low steam to carbon molar ratios. Int. J. Hydrogen. Energ. 35(22), 12191–12200. DOI:10.1016/j.ijhydene.2010.08.080.
  • 19. Yang, J., Wang, X.G., Li, L., Shen, K., Lu, X.G. & Ding, W.Z. (2010). Catalytic conversion of tar from hot coke oven gas using 1-methylnaphthalene as a tar model compound. Appl. Catal. B: Environ. 96(1–2), 232–237. DOI: 10.1016/j.apcatb.2010.02.026.
  • 20. Koo, K.Y., Roh, H.S., Seo, Y.T., Seo, D.J., Yoon, W.L. & Park, S.B. (2008). A highly effective and stable nano-sized Ni/MgO- Al2O3 catalyst for gas to liquids (GTL) process. Int. J. Hydrogen. Energ. 33(8), 2036–2043. DOI: 10.1016/j.ijhydene.2008.02.029.
  • 21. Xin, Q. & Luo, M.F. (2009). Xian Dai Cui Hua Yan Jiu Fang Fa (1st ed). Beijing: Science Press.
  • 22. Gao, J.J., Jia, C., Zhang, M.J., Gu, F., Xu, G.W. & Su, F.B . (2013). Effect of nickel nanoparticle size in Ni/α-Al2O3 on CO methanation reaction for the production of synthetic natural gas. Catal. Sci. Technol. 3(8), 2009–2015. DOI: 10.1039/C3CY00139C.
  • 23. Chen, D., Christensen, K.O., Ochoa-Fernandez, E., Yu, Z.X., Totdal, B., Latorre, N., Monzon, A. & Holmen, A. (2005). Synthesis of carbon nanofi bers: effects of Ni crystal size during decomposition. J. Catal. 229(1), 82–96. DOI: 10.1016/j.jcat.2004.10.017.
  • 24. Jimeneza, V., Sancheza, P., Panagiotopouloub, P., Valverdea, J.L. & Romeroa, A. (2010). Methanation of CO, CO2, and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofi bers catalysts. Appl. Catal. A: Gen. 390(1–2), 35–44. DOI: 10.1016/j.apcata.2010.09.0 26.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62a2b782-3d3a-4d3c-93a9-9bd181421ebc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.