PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deep learning-based CNC milling tool wear stage estimation with multi-signal analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
CNC milling machines are frequently used in the manufacturing of mechanical parts in the industry. One of the most important components of milling machines is the cutting tool. Monitoring the cutting tool wear is important for the reliability, continuity, and quality of production. Monitoring the tool and detecting the stage of wear are difficult processes. In this work, the convolutional neural network (CNN), which is a deep learning method in which the features are extracted by an inner process, was performed to detect the wear stages of the milling tool. These stages that define the total lifespan of the tool are known as initial wear (IW), steady-state wear (SSW), and accelerated wear (AW). Short Time Fourier Transform (STFT) was applied to signals, and signal spectrograms were used to train CNN models with different complex architectures. Vibration signals, acoustic emission signals, and motor current signals from The Nasa Ames Milling Dataset were used to obtain the spectrograms. Pre-trained CNNs (GoogleNet, AlexNet, ResNet-50, and EfficientNet-B0) detected the tool wear stage with varying accuracies. It has been seen that the time duration of model training increases as the size of the dataset grows and the network architecture becomes more complex. The recommended method has also been tested on the 2010 PHM Data Challenge Dataset. CNN shows promise for condition monitoring of milling operations and detecting tool wear stage.
Rocznik
Strony
art. no. 168082
Opis fizyczny
Bibliogr. 65 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Karadeniz Technical University, Turkey
Bibliografia
  • 1. 2010 PHM Data Challenge. https://phmsociety.org/phm_competition/2010-phm-society-conference-data-challenge/
  • 2. Aghazadeh F, Tahan A, Thomas M. Tool condition monitoring using spectral subtraction and convolutional neural networks in milling process. The International Journal of Advanced Manufacturing Technology 2018;98(9):3217-3227. https://doi.org/10.1007/s00170-018-2420-0
  • 3. Aliustaoglu C, Ertunc HM, Ocak H. Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal Processing 2009;23(2):539-546. https://doi.org/10.1016/j.ymssp.2008.02.010
  • 4. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Farhan L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data 2021;8(1):1-74. https://doi.org/10.1186/s40537-021-00444-8
  • 5. Ambadekar PK, Choudhari CM. CNN based tool monitoring system to predict life of cutting tool. SN Applied Sciences 2020;2(5):1-11. https://doi.org/10.1007/s42452-020-2598-2
  • 6. Arinez JF, Chang Q, Gao RX, Xu C, Zhang J. Artificial intelligence in advanced manufacturing: Current status and future Outlook. Journal of Manufacturing Science and Engineering 2020;142(11):110804. https://doi.org/10.1115/1.4047855
  • 7. Bagga PJ, Makhesana MA, Patel HD, Patel KM. Indirect method of tool wear measurement and prediction using ANN network in machining process. Material Today: Proceedings 2021;44:1549-1554. https://doi.org/10.1016/j.matpr.2020.11.770
  • 8. Bazi R, Benkedjouh T, Habbouche H, Rechak S, Zerhouni N. A hybrid CNN-BiLSTM approach-based variational mode decomposition for tool wear monitoring. The International Journal of Advanced Manufacturing Technology 2022;119(5):3803-3817. https://doi.org/10.1007/s00170-021-08448-7
  • 9. Bergs T, Holst C, Gupta P, Augspurger T. Digital image processing with deep learning for automated cutting tool wear detection. Procedia Manufacturing 2020;48:947-958. https://doi.org/10.1016/j.promfg.2020.05.134
  • 10. Brili N, Ficko M, Klancnik S. Automatic identification of tool wear based on thermography and a convolutional neural network during the turning process. Sensors 2021;21(5):1917. https://doi.org/10.3390/s21051917
  • 11. Cao X, Chen B, Yao B, Zhuang S. An intelligent milling tool wear monitoring methodology based on convolutional neural network with derived wavelet frames coefficient. Applied Sciences 2019;9(18):3912. https://doi.org/10.3390/app9183912
  • 12. Cao XC, Chen BQ, Yao B, He WP. Combining translation-invariant wavelet frames and convolutional neural network for intelligent tool wear state identification. Computers in Industry 2019;106:71-84. https://doi.org/10.1016/j.compind.2018.12.018
  • 13. Chen JC, Susanto V. Fuzzy logic based in-process tool-wear monitoring system in face milling operations. The International Journal of Advanced Manufacturing Technology 2003;21(3):186-192. https://doi.org/10.1007/s001700300020
  • 14. Chen XQ, Li HZ. Development of a tool wear observer model for online tool condition monitoring and control in machining nickel-based alloys. The International Journal of Advanced Manufacturing Technology 2009;45(7):786-800. https://doi.org/10.1007/s00170-009-2003-1
  • 15. Chung TK, Yeh PC, Lee H, Lin CM, Tseng CY, Lo WT, Chang JW. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling Processes and Cutter Wear Breakage Condition monitoring. Sensors 2016;16(3):269. https://doi.org/10.3390/s16030269
  • 16. Colantonio L, Equeter L, Dehombreux P, Ducobu F. A systematic literature review of cutting tool wear monitoring in turning by using artificial intelligence techniques. Machines 2021;9(12):351. https://doi.org/10.3390/machines9120351
  • 17. Cooper C, Wang P, Zhang J, Gao RX, Roney T, Ragai I, Shaffer D. Convolutional neural network-based tool condition monitoring in vertical milling operations using acoustic signals. Procedia Manufacturing 2020;49:105-111. https://doi.org/10.1016/j.promfg.2020.07.004
  • 18. Dai W, Liang K, Wang B. State Monitoring Method for Tool Wear in Aerospace Manufacturing Processes Based on a Convolutional Neural Network (CNN). Aerospace 2021;8(11):335. https://doi.org/10.3390/aerospace8110335
  • 19. Duan J, Duan J, Zhou H, Zhan X, Li T, Shi T. Multi-frequency-band deep CNN model for tool wear prediction. Measurement Science and Technology 2021;32(6):065009. https://doi.org/10.1088/1361-6501/abb7a0
  • 20. Emmert-Streib F, Yang Z, Feng H, Tripathi S, Dehmer M. An introductory review of deep learning for prediction models with big data. Frontiers in Artificial Intelligence 2020;3:4. https://doi.org/10.3389/frai.2020.00004
  • 21. Goebel K. Management of Uncertainty in Sensor Validation, Sensor Fusion, and Diagnosis of Mechanical Systems Using Soft Computing Techniques. PhD Thesis, Department of Mechanical Engineering, University of California at Berkeley:1996.
  • 22. Groover MP. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems. NJ, John Wiley & Sons, Inc:2010
  • 23. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Chen T. Recent advances in convolutional neural Networks. Pattern Recognition 2018;77:354-377. https://doi.org/10.1016/j.patcog.2017.10.013
  • 24. Habrat W, Krupa K, Markopoulos AP, Karkalos NE. Thermo-mechanical aspects of cutting forces and tool wear in the laser-assisted turning of Ti-6Al-4V titanium alloy using AlTiN coated cutting tools. The International Journal of Advanced Manufacturing Technology 2021;115(3):759-775. https://doi.org/10.1007/s00170-020-06132-w
  • 25. Hao X, Zheng Y, Lu L, Pan H. Research on Intelligent Fault Diagnosis of Rolling Bearing Based on Improved Deep Residual Network. Applied Sciences 2021;11(22):10889. https://doi.org/10.3390/app112210889
  • 26. Huang PM, Lee CH. Estimation of tool wear and surface roughness development using deep learning and sensors fusion. Sensors 2021;21(16) 5338. https://doi.org/10.3390/s21165338
  • 27. Huang Z, Zhu J, Lei J, Li X, Tian F. Tool wear monitoring with vibration signals based on short-time fourier transform and deep convolutional neural network in milling. Mathematical Problems in Engineering 2021;9976939. https://doi.org/10.1155/2021/9976939
  • 28. Huang Z, Zhu J, Lei J, Li X, Tian F. Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations. Journal of Intelligent Manufacturing 2020;31(4):953-966. https://doi.org/10.1007/s10845-019-01488-7
  • 29. Huang Z, Zhu J, Lei J, Li X, Tian F. Tool wear predicting based on multisensory raw signals fusion by reshaped time series convolutional neural network in manufacturing, IEEE Access 2019;7:178640-178651. https://doi.org/10.1109/ACCESS.2019.2958330
  • 30. Jeon H, Jung Y, Lee S, Jung Y. Area-Efficient Short-Time Fourier Transform Processor for Time–Frequency Analysis of Non-Stationary Signals. Applied Sciences 2020;10(20):7208. https://doi.org/10.3390/app10207208
  • 31. Jing L, Zhao M, Li P, Xu X. A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox. Measurement 2017;111:1-10. https://doi.org/10.1016/j.measurement.2017.07.017
  • 32. Karabacak YE, Gürsel Özmen N, Gümüşel L. Worm gear condition monitoring and fault detection from thermal images via deep learning method. Eksploatacja i Niezawodność – Maintenance and Reliability 2020;22(3):544–556. http://dx.doi.org/10.17531/ein.2020.3.18
  • 33. Kilundu B, Dehombreux P, Chiementin X. Tool wear monitoring by machine learning techniques and singular spectrum analysis. Mechanical Systems and Signal Processing 2011;25(1):400-415. https://doi.org/10.1016/j.ymssp.2010.07.014
  • 34. Kong D, Chen Y, Li N. Gaussian process regression for tool wear prediction. Mechanical Systems and Signal Processing 2018;104:556-574. https://doi.org/10.1016/j.ymssp.2017.11.021
  • 35. Li G, Wang Y, Wang J, He J, Huo Y. Tool wear prediction based on multidomain feature fusion by attention-based depth-wise separable convolutional neural network in manufacturing. The International Journal of Advanced Manufacturing Technology 2021;1-18. https://doi.org/10.1007/s00170-021-08119-7
  • 36. Li W, Liu T. Time varying and condition adaptive hidden Markov model for tool wear state estimation and remaining useful life prediction in micro-milling. Mechanical Systems and Signal Processing 2019;131:689-702. https://doi.org/10.1016/j.ymssp.2019.06.021
  • 37. Liao X, Zhou G, Zhang Z, Lu J, Ma J. Tool wear state recognition based on GWO–SVM with feature selection of genetic algorithm. The International Journal of Advanced Manufacturing Technology 2019;104(1):1051-1063. https://doi.org/10.1007/s00170-019-03906-9
  • 38. Lim ML, Derani MN, Ratnam MM, Yusoff AR. Tool wear prediction in turning using workpiece surface profile images and deep learning neural Networks. The International Journal of Advanced Manufacturing Technology 2022;120(11):8045-8062. https://doi.org/10.1007/s00170-022-09257-2
  • 39. Liu H, Liu Z, Jia W, Zhang D, Wang Q, Tan J. Tool wear estimation using a CNN-transformer model with semi-supervised learning. Measurement Science and Technology 2021;32(12):125010. https://doi.org/10.1088/1361-6501/ac22ee
  • 40. Ma J, Luo D, Liao X, Zhang Z, Huang Y, Lu J. Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning. Measurement 2021;173:108554. https://doi.org/10.1016/j.measurement.2020.108554
  • 41. Mohanraj T, Shankar S, Rajasekar R, Sakthivel NR, Pramanik A. Tool condition monitoring techniques in milling process—a review. Journal of Materials Research and Technology 2020;9(1):1032-1042. https://doi.org/10.1016/j.jmrt.2019.10.031
  • 42. Nouioua M, Bouhalais ML. Vibration-based tool wear monitoring using artificial neural networks fed by spectral centroid indicator and RMS of CEEMDAN modes. The International Journal of Advanced Manufacturing Technology 2021;115(9):3149-3161. https://doi.org/10.1007/s00170-021-07376-w
  • 43. Olsson M, Bushlya V, Lenrick F, Stahl JE. Evaluation of tool wear mechanisms and tool performance in machining single-phase tungsten. International Journal of Refractory Metals and Hard Materials 2021;94:105379. https://doi.org/10.1016/j.ijrmhm.2020.105379
  • 44. Patange AD, Jegadeeshwaran R. Review on tool condition classification in milling: A machine learning approach. Matererial Today: Proceedings 2021;46:1106-1115. https://doi.org/10.1016/j.matpr.2021.01.523
  • 45. Pimenov DY, Gupta MK, da Silva LR, Kiran M, Khanna N, Krolczyk GM. Application of measurement systems in tool condition monitoring of Milling: A review of measurement science approach. Measurement 2022;199:111503. https://doi.org/10.1016/j.measurement.2022.111503
  • 46. Pimenov DY, Mia M, Gupta MK, Machado AR, Pintaude G, Unune DR, Kuntoğlu M. Resource saving by optimization and machining environments for sustainable manufacturing: A review and future prospects. Renewable and Sustainable Energy Reviews 2022;166:112660. https://doi.org/10.1016/j.rser.2022.112660
  • 47. Saha S, Deb S, Bandyopadhyay PP. Progressive wear based tool failure analysis during dry and MQL assisted sustainable micro-milling. International Journal of Mechanical Sciences 2021;212:106844. https://doi.org/10.1016/j.ijmecsci.2021.106844
  • 48. Serin G, Sener B, Ozbayoglu AM, Unver HO. Review of tool condition monitoring in machining and opportunities for deep learning. The International Journal of Advanced Manufacturing Technology 2020;109(3):953-974. https://doi.org/10.1007/s00170-020-05449-w
  • 49. Serra R, Rmili W. Experimental evaluation of flank wear in dry turning from accelerometer data. International Journal of Acoustics and Vibration 2016;21(1):50-58. http://dx.doi.org/10.20855/ijav.2016.21.1394
  • 50. Shao F, Liu Z, Wan Y. Diffusion and oxidation wear of PCBN tool based on thermodynamics. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2010;25(2):265-271. https://doi.org/10.1007/s11595-010-2265-3
  • 51. Terrazas G, Martinez-Arellano G, Benardos P, Ratchev S. Online tool wear classification during dry machining using real time cutting force measurements and a CNN approach. Journal of Manufacturing and Materials Processing 2018;2(4):72. https://doi.org/10.3390/jmmp2040072
  • 52. Trejo-Hernandez M, Osornio-Rios RA, de Jesus Romero-Troncoso R, Rodriguez-Donate C, Dominguez-Gonzalez A, Herrera-Ruiz G. FPGA-based fused smart-sensor for tool-wear area quantitative estimation in CNC machine inserts. Sensors 2010;10(4):3373-3388. https://doi.org/10.3390/s100403373
  • 53. Vetrichelvan G, Sundaram S, Kumaran SS, Velmurugan P. An investigation of tool wear using acoustic emission and genetic algorithm. Journal of Vibration and Control 2015;21(15):3061-3066. https://doi.org/10.1177/1077546314520835
  • 54. Wang J, Xie J, Zhao R, Zhang L, Duan L. Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing. Robotics and Computer-Integrated Manufacturing 2017;45:47-58. https://doi.org/10.1016/j.rcim.2016.05.010
  • 55. Wang Q, Wang H, Hou L, Yi S. Overview of Tool Wear Monitoring Methods Based on Convolutional Neural Network. Applied Sciences 2021;11(24):12041. https://doi.org/10.3390/app112412041
  • 56. Wu J, Su Y, Cheng Y, Shao X, Deng C, Liu C. Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system. Applied Soft Computing 2018; 68:13-23. https://doi.org/10.1016/j.asoc.2018.03.043
  • 57. Wu X, Liu Y, Zhou X, Mou A. Automatic identification of tool wear based on convolutional neural network in face milling process. Sensors 2019;19(18):3817. https://doi.org/10.3390/s19183817
  • 58. Xu X, Wang J, Zhong B, Ming W, Chen M. Deep learning-based tool wear prediction and its application for machining process using multi-scale feature fusion and channel attention mechanism. Measurement 2021;177:109254. https://doi.org/10.1016/j.measurement.2021.109254
  • 59. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights into Imaging 2018;9(4):611-629. https://doi.org/10.1007/s13244-018-0639-9
  • 60. Yin Y, Wang S, Zhou J. Multisensor-based tool wear diagnosis using 1D-CNN and DGCCA. Applied Intelligence 2022;1-14. https://doi.org/10.1007/s10489-022-03773-0
  • 61. Younas M, Jaffery SHI, Khan A, Khan M. Development and analysis of tool wear and energy consumption maps for turning of titanium alloy (Ti6Al4V). Journal of Manufacturing Processes 2021;62:613-622. https://doi.org/10.1016/j.jmapro.2020.12.060
  • 62. Zhang X, Lu X, Li W, Wang S. Prediction of the remaining useful life of cutting tool using the Hurst exponent and CNN-LSTM. The International Journal of Advanced Manufacturing Technology 2021;112(7):2277-2299. https://doi.org/10.1007/s00170-020-06447-8
  • 63. Zheng G, Sun W, Zhang H, Zhou Y, Gao C. Tool wear condition monitoring in milling process based on data fusion enhanced long short-term memory network under different cutting conditions. Eksploatacja i Niezawodność-Maintenance and Reliability 2021;23(4):612-618. https://doi.org/10.17531/ein.2021.4.3
  • 64. Zhou Y, Zhi G, Chen W, Qian Q, He D, Sun B, Sun W. A new tool wear condition monitoring method based on deep learning under small samples. Measurement 2022;189:110622. https://doi.org/10.1016/j.measurement.2021.110622
  • 65. Zhu Q, Sun W, Zhou Y, Gao C. A tool wear condition monitoring approach for end milling based on numerical simulation. Eksploatacja i Niezawodność-Maintenance and Reliability 2021;23(2):371-380. https://doi.org/10.17531/ein.2021.2.17
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-629e1c3f-da25-400c-ae9b-072b82638ee3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.