PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study into water hammer protection of a water supply duct in Movila Verde, Constanta

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Human health and well-being are modern day challenges that are directly related to quality of drinking water supply. The study is focused on a newly conceived independent water supply system in Plopeni, which takes water from a good quality underground source, and supplies seven villages either by a series of pumping installations or by gravity. The assessment of hydraulic parameters, energy saving possibilities and the best means to protect the pipes from water hammering are the main goals of the numerical simulation during either the normal or abnormal operation of the water supply duct that carries water from the Plopeni pumping station to the neigh bouring village of Movila Verde. The duct has a specific longitudinal profile that may induce unwanted and dangerous pressure variation during water hammering. The hydraulic parameters and energy consumption indicators were determined by numerical simulation in EPANET. The extreme values of pressure and the most vulnerable cross sections of the pipe during water hammering were identified by numerical simulation with a non-commercial software, named Hammer. The high-pressure values are not dangerous, but cavitation may occur. The hydraulic shock simulation was performed on different methods of protection, provided by closing procedures of the check valve, and considering that the duct is made of steel. The same simulations were considered for a HDPE-made duct of the same inner diameter. The simulation results led to the conclusion that a 60 s two-stages closing procedure proves to be the best solution to protect the steel-made duct from cavitation. In the second simulation, that of a HDPE duct with the same diameter, a 45 s two-stages closing of the check valve provides safe protection from cavitation.
Rocznik
Strony
39--52
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Ovidius University of Constanta
  • Ovidius University of Constanta
Bibliografia
  • 1.Brisbane Report (2016) Conclusions, Key Messages and Outcomes. World Water Congress & Exhibition.
  • 2.Carmona-Paredes, R.B. et al. (2019) A new method to calculate hydraulic transients in HDPE pipes using the standard solid model to represent the HDPE viscoelastic behaviour. IOP Conf. Ser.: Earth Environ. Sci. 240 052020, DOI: 10.1088/1755-1315/240/5/052020.
  • 3.Constantin, A. et al. (2011) Hydraulic Machinery and Pumping Stations. Constanta, Ovidius University Press.
  • 4.Ghidaoui, M.S. et al. (2005) A Review of Water Hammer Theory and Practice. Applied Mechanics Reviews, 58, 49-76. DOI: 10.1115/1.1828050.
  • 5.Lighthill, J. (2007) Waves in Fluids. Cambridge University Press, UK.
  • 6.Nidal, S. et al. (2019) Centre international pour la sécurité et la gestion durable de l’eau. Water Security and the Sustainable Development Goals, Vol. 1, UNESCO Publishing.
  • 7.NP 133-2013 Regulation regarding the design, execution and exploitation of water distribution systems. Bucharest, 2013.
  • 8.Popescu, M. et al. (1987) Methodes of hydraulic calculation for hydro-electric plants and pumping stations. Bucharest, Editura Tehnica.
  • 9.RAJAC, Constanta County Water Board (2017) National Project for water and wastewater infrastructure development within operation area of S.C. RAJA S.A. Constanta, during 2014-2020 - Constanta County. Environmental impact assessment report', vol. 1, Constanta, http://rajac.ro/wp-content/ uploads/2017/02/1_RIM_Constanta_Vol_1.pdf.
  • 10.Rossman, L. (2000) EPANET 2 User Manual. Water Supply and Water Resources Division National Risk Management Research Laboratory, US.
  • 11.Šoltész, A. et al. (2018), Hydrological and Hydraulic Aspects of the Revitalization of Wetlands: A Case Study in Slovakia. The Handbook of Environmental Chemistry. Berlin, Heidelberg, Springer. DOI: 10.1007/698_2017_227.
  • 12.SR 1343-1/2006 Water supplies. Calculation of drinking water supply quantities in urban and rural sites, Bucharest, 2006.
  • 13.Stanciu, T. et al. (2017) Solving the problems of gas flow external resistance through the breathing apparatus of divers using Computational Fluid Dynamics. International Symposium PROMARE.
  • 14.Streeter, V.L. et al. (1987) Hydraulic Ttransients. New York, McGraw-Hill Book Company.
  • 15.Urbanowicz, K. et al. (2016) J. Phys.: Conf. Ser. 760 012037.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-629c31bf-68b5-4c5e-a55e-0daab6d25e00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.