PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Eigenvalue asymptotics for potential type operators on lipschitz surfaces of codimension greater than 1

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For potential type integral operators on a Lipschitz submanifold the asymptotic formula for eigenvalues is proved. The reasoning is based upon the study of the rate of operator convergence as smooth surfaces approximate the Lipschitz one.
Rocznik
Strony
733--758
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Department ol Mathematics Chalmers University ol Technology, Sweden
  • University ol Gothenburg Eklandagatan 86, S-412 96 Gothenburg, Sweden
  • Department ol Physics St. Petersburg State University Russia
  • St. Petersburg University lor Telecommunications Department ol Mathematics St. Petersburg, 198504, Russia
Bibliografia
  • [1] M.S. Agranovich, Spectral properties of potential-type operators for a class of strongly elliptic systems on smooth and Lipschitz surfaces, Tr. Mosk. Mat. Obsh. 62 (2001), 3-53 [in Russian]; English translation in Trans. Moscow Math. Soc. 62 (2001), 1-47.
  • [2] M.S. Agranovich, Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains, Uspehi Matem. Nauk 57 (2002) 5, 3-78 [in Russian]; English translation in Russian Mathem. Surveys 57 (2002), 847-920.
  • [3] M.S. Agranovich, B.A. Amosov, Estimates of s-numbers and spectral asymptotics for integral operators of potential type on non-smooth surfaces, Funct. Anal, i Prilozh. 30 (1996) 2, 1-18 [in Russian]; English translation in: Funct. Anal, and Appl. 30 (1996) 75-89.
  • [4] M.S. Agranovich, B.Z. Katsenelenbaum, A.N. Sivov, N.N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH Verlag, Berlin, 1999.
  • [5] M.Sh. Birman, M.Z. Solomjak, Asymptotics of the spectrum of weakly polar integral operators, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970) 1142-1158 [in Russian]; translation in Mathematics of the USSR-Izvestiya, 4:5 (1970), 1151-1168.
  • [6] M.Sh. Birman, M.Z. Solomjak, The asymptotics of the spectrum of pseudodifferential operators with anisotropic-homogeneous symbols, I, II, Vestnik Leningr. Univ. (Math.) no. 13 (1977), 13-27, no. 13 (1979), 5-10; English translation in Vestnik. Leningr. Univ. Math. 10 (1980), 12 (1982).
  • [7] T. Chang, Boundary integral operator for the fractional Laplacian on the boundary of a bounded smooth domain, J. Integral Equations Appl. 28 (2016) 3, 343-372.
  • [8] M. Cotlar, R. Cignoli, An Introduction to Functional Analysis, NH, 1974.
  • [9] M. Dauge, D. Robert, Weyl's formula for a class of pseudodifferential operators with negative order on L2(Rn), Lecture Notes in Math., vol. 1256, Springer, Berlin, 1987, pp. 91-122.
  • [10] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992.
  • [11] M. Goffeng, Analytic formulas for the topological degree of non-smooth mappings: the odd-dimensional case, Adv. Math. 231 (2012) 1, 357-377.
  • [12] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nons elf adjoint Operators, Nauka, Moscow, 1965; English transl.: Amer. Math. Soc, 1969.
  • [13] G. Grubb, Singular Green operators and their spectral asymptotics, Duke Math. J. 51 (1984), 477-528.
  • [14] G. Hsiao, W. Wendland, Boundary Integral Equations, Springer-Verlag, Berlin, 2008.
  • [15] G.E. Karadzhov, The inclusion of integral operators in the classes Sp for p > 2, Integral and differential operators. Differential equations, Probl. Mat. Anal., vol. 3, Leningrad, 1972, pp. 28-33 [in Russian]; English transl. in J. Soviet Mathem. 1 (1973), 200-204.
  • [16] G.P. Kostometov, Asymptotic behavior of the spectrum of integral operators with a singularity on the diagonal, Matemat. Sbornik. 94(136)-3(7) (1974), 444-451 [in Russian]; English translation in Math. USSR-Sb. 23:3 (1974), 417-424.
  • [17] G.P. Kostometov, On the asymptotics of the spectrum of integral operators with polar kernels, Vestn. Leningr. Univ. 1977, no. 13, Mat. Mekh. Astron. 1977, no. 3, (1977) 166-167 [in Russian].
  • [18] G. Rozenblum, G. Tashchiyan, Eigenvalue asymptotics for potential type operators on Lipschitz surfaces, Russian J. Math. Phys. 13 (2006) 3, 326-339.
  • [19] N.N. Voitovich, B.Z. Katsenelenbaum, A.N. Sivov, Generalized Method of Eigenoscilla-tions in Diffraction Theory, Nauka, Moscow, 1977 [in Russian].
  • [20] B. Russo, On the Hausdorff-Young theorem for integral operators, Pacific J. Math. 68 (1977) 1, 241-253.
  • [21] G. Verchota, Layer potentials and regularity for the Dirichlet problems in Lipschitz domains, J. Funct. Anal. 59 (1984), 572-611.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-629470b8-b43d-4138-8ef2-8fe9ffbca60f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.