PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Single-iterative algorithm based on first arrival waves for the forward modeling of two-dimensional tomography

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two-dimensional tomographic forward modeling based on first arrivals requires the calculation of the minimum travel times of multiple emission points in a single iteration. The conventional method, which calculates each emission point one by one, produces many unuseful calculations and has low computational efficiency. To solve this problem, given the characteristic that the velocity distribution of a model does not change during a single iteration of forward modeling, an improved algorithm was proposed based on the reciprocity principle and Fermat’s principle. The ray tracing results of a small number of emission points were used to constrain the calculation area of other emission points, which reduced the number of unuseful calculations and improved the calculation efficiency of a single-iteration tomographic forward modeling simulation. Theoretical analysis and numerical examples showed that for a homogeneous model, when the transmitting and receiving points were located on two long sides, three adjacent sides (i.e., two long sides and one short side), and four sides, the computational efficiency of the improved algorithm was about 2 times, 2 times, and 1.5 times, respectively, that of the conventional method. For heterogeneous models, the computational efficiency of the improved algorithm was usually more significant.
Czasopismo
Rocznik
Strony
1601--1616
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Hunan Provincial Communications Planning, Survey and Design Institute CO., LTD, Changsha, Hunan, China
  • College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan, Hunan, China
  • Hunan Provincial Communications Planning, Survey and Design Institute CO., LTD, Changsha, Hunan, China
autor
  • College of Civil Engineering, Hunan University of Technology, Zhuzhou, Hunan, China
autor
  • Hunan Provincial Communications Planning, Survey and Design Institute CO., LTD, Changsha, Hunan, China
Bibliografia
  • 1. Asakawa E, Kawanaka T (1993) Seismic ray tracing using linear traveltime interpolation. Geophys Prospect 41(1):99-111. https://doi. org/10.1111/j.1365-2478.1993.tb00567.x
  • 2. Cardarelli E, Cerreto A (2002) Ray tracing in elliptical anisotropic media using the linear traveltime interpolation (LTI) method applied to trav-eltime seismic tomography. Geophys Prospect 50(1):55-72. https://doi.org/10.1046/j.1365-2478.2002.00297.x
  • 3. Dahlen FA, Hung SH, Nolet G (2000) Fréchet kernels for finite-frequency traveltimes-I. Theory Geophys J Int 141:157-174. https:// doi.org/10.1046/j.1365-246X.2000.00070.x
  • 4. Ganellari D, Haase G, Zumbusch G (2018) A massively parallel Eikonal solver on unstructured meshes. Comput vis Sci 19:3-18. https://doi.org/10.1007/s00791-018-0288-z
  • 5. Gomez JV, Alvarez D, Garrido S, Moreno L (2019) Fast methods for Eikonal equations: an experimental survey. IEEE Access 7:39005-39029. https://doi.org/10.1109/ACCESS.2019.2906782
  • 6. Jackson MJ, Tweeton DR (1994) MIGRATOM—geophysical tomography using wavefront migration and fuzzy constraints. Minneapolis Mn U.S. department of the Interior Bureau of Mines Ri.
  • 7. Jeong WK, Whitaker RT (2008) A fast iterative method for Eikonal equations. SIAM J Sci Comput 30:2512-2534. https://doi.org/10. 1137/060670298
  • 8. Julian BR, Gubbins D (1977) Three-dimensional seismic ray tracing. J Geophys 43:95-113
  • 9. Kim S, Cook R (1999) 3-D traveltime computation using second-order ENO scheme. Geophysics 64:1867-1876. https://doi.org/ 10.1190/1.1444693
  • 10. Koketsu K, Kennett BLN, Takenaka H (1991) 2-D reflectivity method and synthetic seismograms for irregularly layered structures-II. Invariant Embed Approach Geophys J Int 105:119-130. https:// doi.org/10.1111/j.1365-246X.1991.tb03448.x
  • 11. Lelievre PG, Farquharson CG, Hurich CA (2011) Computing firstarrival seismic traveltimes on unstructured 3-D tetrahedral grids using the fast marching method. Geophys J Int 184:885-896. https://doi.org/10.1111/j.1365-246X.2010.04880.x
  • 12. Lu JB, Fang Z (2014) An improved ray-tracing algorithm based on linear travel-time interpolation. Acta Seismologica Sin 36(6):1089-1100. https://doi.org/10.3969/j.issn.0253-3782.2014.06.010. (in Chinese)
  • 13. Lu JB, Fang Z (2016) An improved method on backward tracing of the shortest path raytracing algorithm with dynamic networks. J
  • 14. Hunan Univ 43(5):111-117. https://doi.org/10.16339/j.cnki.hdxbz kb.2016.05.013. (in Chinese)
  • 15. Mak S, Koketsu K (2011) Shortest path ray tracing in cell model with a second-level forward star. Geophys J Int 186:1279-1284. https:// doi.org/10.1111/j.1365-246X.2011.05103.x
  • 16. Martin J, Broughton KJ, Giannopolous A et al (2001) Ultrasonic tomography of grouted duct post-tensioned reinforced concrete bridge beams. NDT & E Int 34(2):107-113. https://doi.org/10. 1016/S0963-8695(00)00035-9
  • 17. Moser TJ (1991) Shortest path calculation of seismic rays. Geophysics 56:59-67. https://doi.org/10.1190/1.1442958
  • 18. Nakanishi I, Yamaguchi K (1986) A numerical experiment on nonlinear image reconstruction from first-arrival times for two-dimensional island arc structure. J Phys Earth 34:195-201. https://doi. org/10.4294/jpe1952.34.195
  • 19. Pereyra V, Lee WHK, Keller HB (1980) Solving two-point seismic-ray tracing problems in a heterogeneous medium. Bull Seismol Soc Am 70:79-99
  • 20. Podvin P, Lecomte I (1991) Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophys J Int 105:271-284. https://doi.org/10.1111/j.1365-246X.1991.tb03461.x
  • 21. Qin F, Luo Y, Olsen KB, Cai W, Schuster GT (1992) Finite-difference solution of the eikonal equation along expanding wavefronts. Geophysics 57:478-487. https://doi.org/10.1190/1.1443263
  • 22. Sethian JA (2001) Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J Comput Phys 169:503-555. https://doi.org/10.1006/jcph.2000.6657
  • 23. Treister E, Haber E (2016) A fast marching algorithm for the factored eikonal equation. J Comput Phys 324:210-225. https://doi.org/10. 1016/j.jcp.2016.08.012
  • 24. Um J, Thurber CH (1987) A fast algorithm for two-point seismic ray tracing. Bull Seismol Soc Am 77:972-986
  • 25. Vidale J (1988) Finite-difference calculation of travel times. Bull Seis-mol Soc Am 78:2062-2076
  • 26. Vidale J (1990) Finite-difference calculation of traveltimes in three dimensions. Geophysics 55:521-526. https://doi.org/10.1190/1. 1442863
  • 27. Xu T, Xu GM, Gao EG et al (2004) Block modeling and shooting ray tracing in complex 3-d media. Chin J Geophys 47(6):1118-1126. https://doi.org/10.3321/j.issn:0001-5733.2004.06.027. (in Chinese)
  • 28. Zhao AH, Zhang ZJ, Teng JW (2004) Minimum travel time tree algorithm for seismic ray tracing: improvement in efficiency. J Geophys Eng 1(4):245-251. https://doi.org/10.1088/1742-2132/1/4/ 001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-628895a3-f1c9-4576-b284-27509f41e834
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.