Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The main drivers of coastal processes, such as wave activity, variations in the water level, ice cover, and wind drift, may act differently in different segments of marginal seas with complex shapes. We analyse how the relative role of these drivers on the evolution of sedimentary shores changes along the southern and eastern Baltic Sea. While changes in the average water level have a strong impact along the southern shores of the Baltic Sea, rapid increases in the water level extremes affect most of the eastern subbasins of the Gulf of Finland and Gulf of Riga. The presence of a two-peak structure of predominant winds creates a fragile balance of alongshore sediment transport on the northeastern part of the Baltic proper and the Gulf of Riga. This balance could be changed by a rotation of predominant wave directions by a few degrees. Severe waves usually occur on the southern shores of the sea during water levels that are close to the long-term mean, while synchronisation of strong waves and high-water level is common on the eastern shore. The presence of sea ice is uncommon and insignificantly damps coastal processes in the southern part of the sea but the frequent presence of ice cover and freezing temperatures during the windy season stabilise the beaches of the north-eastern shores. Climate driven changes in ice cover duration may lead to erosion of many beaches in this part of the sea. The core message is that the impact of a single manifestation of climate change may vary greatly in different parts of the Baltic Sea and the reaction of coastal processes to this impact is substantially site-specific.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
Art. no. 67103
Opis fizyczny
Bibliogr. 240 poz., fot., map., rys., wykr.
Twórcy
autor
- Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
autor
- Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
- Estonian Academy of Sciences,Tallinn, Estonia
autor
- Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
autor
- Latvian Institute of Aquatic Ecology, Riga, Latvia
Bibliografia
- 1. Ågren, J., Svensson, R., 2007. Postglacial land uplift model and system definition for the new swedish height system RH 2000. Reports in Geodesy and Geographical Information Systems, Gävle.
- 2. Andrée, E., Su, J., Dahl Larsen, M.A., Drews, M., Stendel, M., Skovgaard Madsen, K., 2023. The role of preconditioning for extreme storm surges in the western Baltic Sea. Natural Hazards Earth Syst. Sci. 23, 1817-1834. https://doi.org/10.5194/nhess-23-1817-2023
- 3. Angnuureng, D.B., Almar, R., Senechal, N., Castelle, B., Addo, K.A., Marieu, V., Ranasinghe, R. 2017. Shoreline resilience to individual storms and storm clusters on a mesomacrotidal barred beach. Geomorphology 290, 265-276. https://doi.org/10.1016/j.geomorph.2017.04.007
- 4. Averkiev, A.S., Klevannyy, K.A., 2010. A case study of the impact of cyclonic trajectories on sea-level extremes in the Gulf of Finland. Cont. Shelf Res. 30, 707-714. https://doi.org/10.1016/j.csr.2009.10.010
- 5. Babakov, A.N., Chubarenko, B.V., 2019. The structure of the net alongshore sediment transport in the eastern Gulf of Gdansk. Water Res. 46 (4), 515-529. https://doi.org/10.1134/S0097807819040031
- 6. BACC, 2015. Second Assessment of Climate Change for the Baltic Sea Basin. The BACC II Author Team. Regional Climate Studies. Springer, Cham, Heidelberg, New York, Dordrecht, London. https://doi.org/10.1007/978-3-319-16006-1
- 7. Badur, J., Cieślikiewicz, W., 2018. Spatial variability of long-term trends in significant wave height over the Gulf of Gdańsk using System Identification techniques. Oceanol. Hydrobiol. Studies 47 (2), 190-201. https://doi.org/10.1515/ohs-2018-0018
- 8. Badyukova, E.N., Zindarev, L.A., Lukyanova, S.A., Solovieva, G.D., 2018. Structure of the south-western part of the Curonian Spit. Arch. Hydro-Eng. Environ. Mech. 65 (2), 109-122. https://doi.org/10.1515/heem-2018-0008
- 9. Bagdanavičiūtė, I., Kelpšaitė, L., Daunys, D., 2012. Assessment of shoreline changes along the Lithuanian Baltic Sea coast during the period 1947–2010. Baltica 25 (2), 171-184. https://doi.org/10.5200/baltica.2012.25.17
- 10. Bagdanavičiūtė, I., Kelpšaitė, L., Soomere, T., 2015. Multicriteria evaluation approach to coastal vulnerability index development in micro-tidal low-lying areas. Ocean Coast Manage. 104, 124-135. https://doi.org/10.1016/j.ocecoaman.2014.12.011
- 11. Baldock, T.E., Birrien, F., Atkinson, A., Shimamoto, T., Callaghan, D.P., Nielsen, P., 2017. Morphological hysteresis in the evolution of beach profiles under sequences of wave climates – Part 1; observations. Coast. Eng. 128, 92-105. https://doi.org/10.1016/j.coastaleng.2017.08.005
- 12. Barnes, P.W., Kempema, E.W., Reimnitz, E., McCormick, M., 1994. The influence of ice on southern Lake-Michigan coastal erosion. Great Lakes Res. 20 (1), 179-195. https://doi.org/10.1016/S0380-1330(94)71139
- 13. Barnes, P.W., Kempema, E.W., Reimnitz, E., McCormick, M., Weber, W.S., Hayden, E.C., 1993. Beach profile modification and sediment transport by ice – An overlooked process on Lake-Michigan. J. Coast. Res. 9 (1), 65-86.
- 14. Barnhart, K.R., Overeem, I., Anderson, R.S., 2014. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 8 (5), 1777-1799. https://doi.org/10.5194/tc-8-1777-2014
- 15. Bärring, L., von Storch, H., 2004. Scandinavian storminess since about 1800. Geophys. Res. Lett. 31 (20), L20202. https://doi.org/10.1029/2004GL020441
- 16. Bidorn, B., Sok, K., Bidorn, K., Burnett, W., 2021. An analysis of the factors responsible for the shoreline retreat of the Chao Phraya Delta (Thailand). Sci. Total Environ. 769, 145253. https://doi.org/10.1016/j.scitotenv.2021.145253
- 17. Bierstedt, S.E., Hünicke, B., Zorita, E., 2015. Variability of wind direction statistics of mean and extreme wind events over the Baltic Sea region. Tellus A 67, 29073. https://doi.org/10.3402/tellusa.v67.29073
- 18. Bird, E.C.F., 2008. Coastal Geomorphology: An Introduction. 2nd ed., Wiley and Sons, Chichester, 436 pp.
- 19. Birkemeier, W.A., Nicholls, R.J., Lee, G.H., 1999. Storms, storm groups and nearshore morphologic change, [in:] Kraus, N.C., McDougal, W.G. (eds.), 4th International Symposium on Coastal Engineering and Science of Coastal Sediment Processes, Hauppauge, NY, June 21–23, 1999. Coastal Sediments ’99, 1–3, 1109-1122.
- 20. Björkqvist, J.V., Lukas, I., Alari, V., van Vledder, G.P., Hulst, S., Pettersson, H., Behrens, A., Männik, A., 2018. Comparing a 41-year model hindcast with decades of wave measurements from the Baltic Sea. Ocean Eng. 152, 57-71. https://doi.org/10.1016/j.oceaneng.2018.01.048
- 21. Blum, M.D., Roberts, H.H., 2009. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea level rise. Nat. Geosci. 2 (7), 488-491. https://doi.org/10.1038/ngeo553
- 22. Bobykina, V.P. Stont, Zh.I., 2015. Winter storm activity in 2011–2012 and its consequences for the southeastern Baltic coast. Water. Resour. 42 (3), 371-377. https://doi.org/10.1134/S0097807815030021
- 23. Bobykina, V.P., Stont, Zh.I., Kileso, A.W., 2021. Deformations of the sea shore of the Curonian Spit (southeastern Baltic) under the influence of storms autumn-winter season 2018–2019. Vestnik of IKBFU. Series: Natural and Medical Sciences 2 (C), 73-83 (in Russian).
- 24. Boldyrev, V.L., Teplyakov, G.N., 2003. Formation, condition and problems of preservation of landscapes of the Curonian spit, [in:] Problems of studying and protection of natural and cultural heritage, Moscow, 20-40 (in Russian).
- 25. Boldyrev, V.L., Lashenkov, V.M., Ryabkova, O.I., 1990. Storm deformation of coasts of the Kaliningrad region, Baltic Sea, [in:] Issues of Coastal Dynamics and Paleogeography of the Baltic Sea Coastal Zone, 1, 97-129 (in Russian).
- 26. Boniecka, H., Kubacka, M., 2024. Artificial nourishment schemes along the Polish coast and lagoon shores between 1980 and 2020, with a particular focus on the Hel Peninsula. Water 16(7), 1005. https://doi.org/10.3390/w16071005
- 27. Brenninkmeyer, B.M., 1982. Cut and fill. In: Beaches and Coastal Geology. [in:] Encyclopedia of Earth Science. Springer, Boston, MA. https://doi.org/10.1007/0-387-30843-1
- 28. Broman, B., Hammarklint, T., Rannat, K., Soomere, T., Valdmann, A., 2006. Trends and extremes of wave fields in the north-eastern part of the Baltic Proper. Oceanologia, 48 (S), 165-184.
- 29. Cai, F., Su, X., Liu, J., Li, B., Lei, G., 2009. Coastal erosion in China under the condition of global climate change and measures for its prevention. Prog. Nat. Sci. 19 (4), 415-426. https://doi.org/10.1016/j.pnsc.2008.05.034
- 30. Čepienė, E., Dailidytė, L., Stonevičius, E., Dailidienė, I. 2022. Sea level rise impact on compound coastal river flood risk in Klaipeda City (Baltic coast, Lithuania). Water 14 (3), 414. https://doi.org/10.3390/w14030414
- 31. Coco, G., Senechal, N., Rejas, A., Bryan, K.R., Capo, S., Parisot, J.P., Brown, J.A., MacMahan, J.H.M., 2014. Beach response to a sequence of extreme storms. Geomorphology 204, 493-501. https://doi.org/10.1016/j.geomorph.2013.08.028
- 32. Chechko, V.A., Chubarenko, B.V., Boldyrev, V.L., Bobykina, V.P., Kurchenko, V.Y., Domnin, D.A., 2008. Dynamics of the marine coastal zone of the sea near the entrance moles of the Kaliningrad seaway channel. Water Res. 35 (6), 652-661. https://doi.org/10.1134/S0097807808060043
- 33. Cieślikiewicz, W., Paplińska-Swerpel B., 2008. A 44-year hindcast of wind wave fields over the Baltic Sea. Coast. Eng. 55, 894-905. https://doi.org/10.1016/j.coastaleng.2008.02.017
- 34. Dailidienė, I., Davulienė, L., Tilickis, B., Stankevičius, A., Myrberg, K., 2006. Sea level variability at the Lithuanian coast of the Baltic Sea. Boreal Environ. Res. 11, 109 -121.
- 35. Davis, R.A., 2011. Sea-level Change in the Gulf of Mexico. Texas A&M University Press, College Station, TX, USA.
- 36. Dean, R., Dalrymple, R., 2002. Coastal Processes with Engineering Applications. Cambridge University Press, Cambridge, 475 pp.
- 37. Deng, J., Harff, J., Zhang, W., Schneider, R., Dudzińska-Nowak, J., Giza, A., Terefenko, P., Furmańczyk, K., 2017. The Dynamic Equilibrium Shore Model for the Reconstruction and Future Projection of Coastal Morphodynamics, [in:] Harff, J., Furmańczyk, K., von Storch, H. (Eds.), Coastline Changes of the Baltic Sea from South to East. Coast. Res. Library, 19, Springer, Cham, 87-106. https://doi.org/10.1007/978-3-319-49894-2_6
- 38. Dissanayake, P., Brown, J., Wisse, P., Karunarathna, H., 2015. Effects of storm clustering on beach/dune evolution. Mar. Geol. 370, 63-75. https://doi.org/10.1016/j.margeo.2015.10.010
- 39. Divinsky, B.V., Ryabchuk, D.V., Kosyan, R.D., Sergeev, A.Y., 2021. Development of the sandy coast: Hydrodynamic and morphodynamic conditions (on the example of the Eastern Gulf of Finland). Oceanologia, 63 (2), 214-226. https://doi.org/10.1016/j.oceano.2020.12.002
- 40. Dluzewski, M., Dluzewska, J.R., Hesp, P.A., Tomczak, J.O., Dubis, L., 2023. Impact of coastline orientation on the dynamics of foredune growth (Łeba Barrier, south Baltic Sea coast, Poland). Miscellanea Geographica 27 (4), 147-156. https://doi.org/10.2478/mgrsd-2023-0020
- 41. Dodge, S.E., Zoet, L.K., Rawling, J.E., Theuerkauf, E.J., Hansen, D.D., 2022. Transport properties of fast ice within the nearshore. Coast. Eng. 177, 104176. https://doi.org/10.1016/j.coastaleng.2022.104176
- 42. Dreier, N., Männikus, R., Fröhle, P., 2020. Long-term changes of waves at the German Baltic Sea soast: Are there trends from the past? J. Coast. Res. 95(Sp. Iss.), 1416-1421. https://doi.org/10.2112/SI95-274.1
- 43. Dudzińska-Nowak, J., 2017. Morphodynamic processes of the Swina Gate coastal zone development (southern Baltic Sea), [in:] Harff, J., Furmańczyk, K., von Storch, H. (Eds.), Coastline Changes of the Baltic Sea from South to East. Coastal Res. Library 19, Springer, Cham. https://doi.org/10.1007/978-3-319-49894-2_11
- 44. Eberhards, G. and Lapinskis, J., 2008. Processes on the Latvian coast of the Baltic Sea: atlas. Riga. University of Latvia, Riga. Eberhards, G., 2003. The sea coast of Latvia. University of Latvia, Riga, 294 pp. (in Latvian).
- 45. Eberhards, G., Lapinskis, J., Saltupe, B., 2006. Hurricane Erwin 2005 coastal erosion in Latvia. Baltica 19 (1), 10-19.
- 46. Eelsalu, M., Parnell, K.E., Soomere, T., 2022. Sandy beach evolution in the low-energy microtidal Baltic Sea: attribution of changes to hydrometeorological forcing. Geomorphology 414, 108383. https://doi.org/10.1016/j.geomorph.2022.108383
- 47. Eelsalu, M., Soomere, T., Jankowski, M.Z., 2024. Climate change-driven alongshore variations of directional forcing of sediment transport on the eastern Baltic Sea coast. J. Coast. Res. 113 (Sp. Iss.), 256-260. https://doi.org/10.2112/JCR-SI113-051.1
- 48. Eelsalu, M., Soomere, T., Julge, K., 2015. Quantification of changes in the beach volume by the application of aninverse of the Bruun Rule and laser scanning technology. Proc. Estonian Acad. Sci. 64 (3), 240-248. https://doi.org/10.3176/proc.2015.3.06
- 49. Eelsalu, M., Soomere, T., Pindsoo, K., Lagemaa, P., 2014. Ensemble approach for projections of return periods of extreme water levels in Estonian waters. Cont. Shelf Res. 91, 201-210. https://doi.org/10.1016/j.csr.2014.09.012
- 50. Eichentopf, S., Alsina, J.M., Christou, M., Kuriyama, Y., Karunarathna, H., 2020. Storm sequencing and beach profile variability at Hasaki, Japan. Mar. Geol. 424, 106153. https://doi.org/10.1016/j.margeo.2020.106153
- 51. Erikson, L., Morim, J., Hemer, M., Young, I., Wang, X.L., Mentaschi, L., Mori, N., Semedo, A., Stopa, J., Grigorieva, V., Gulev, S., Aarnes, O., Bidlot, J.R., Breivik, O., Bricheno, L., Shimura, T., Menendez, M., Markina, M., Sharmar, V., Trenham, C., Wolf, J., Appendini, C., Caires, S., Groll, N., Webb, A., 2022. Global ocean wave fields show consistent regional trends between 1980 and 2014 in a multiproduct ensemble. Commun. Earth Environ. 3(1), 320. https://doi.org/10.1038/s43247-022-00654-9
- 52. Feng, J., Li, D., Dang, W., Zhao, L., 2023. Changes in storm surges based on a bias-adjusted reconstruction dataset from 1900 to 2010. J. Hydrol. Pt. A, 617, 128759. https://doi.org/10.1016/j.jhydrol.2022.128759
- 53. Feser, F., Barcikowska, M., Krueger, O., Schenk, F., Weisse, R., Xia, L., 2015. Storminess over the North Atlantic and northwestern Europe - a review. Q. J. R. Meteorol. Soc. B 141 (687), 350-382. https://doi.org/10.1002/qj.2364
- 54. Furmańczyk, K., 2013. Poland, [in:] Pranzini, E., Williams, A. (Eds.), Coastal erosion and protection in Europe, Routledge, London, 81-95.
- 55. Gao, J.J., Kennedy, D.M., Konlechner, T.M., 2020. Coastal dune mobility over the past century: A global review. Prog. Phys. Geog. Environ. 44 (6), 814-836. https://doi.org/10.1177/0309133320919612
- 56. Garcı́a-Romero, L., Hesp, P.A., Peña-Alonso, C., da Silva, G.M., Hernández-Calvento, L., 2019. Climate as a control on foredune mode in Southern Australia. Total Environ. 694, 133768. 30/38 https://doi.org/10.1016/j.scitotenv.2019.133768
- 57. Girjatowicz, J.P., 2011. Ice conditions on the southern Baltic Sea coast. J. Cold Reg. Eng. 25 (1), 1-15. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000020
- 58. Girjatowicz, J.P., Łabuz, T.A., 2020. Forms of piled ice at the southern coastal of the Baltic Sea. Estuar. Coast. Shelf Sci. 239, 106746. https://doi.org/10.1016/j.ecss.2020.106746
- 59. Girjatowicz, J.P., Świątek, M., 2020. Relationships between the Baltic Sea ice extent and ice parameters in the sheltered basins of the southern Baltic coast. Oceanol. Hy-drobiol. Stud. 49 (3), 291-303. https://doi.org/10.1515/ohs-2020-0026
- 60. Girjatowicz, J.P., Światek, M., 2021. Relationship between air temperature change and southern Baltic coastal lagoons ice conditions. Atmosphere 12 (8), 931. https://doi.org/10.3390/atmos12080931
- 61. Grinsted, A., 2015. Projected Change – Sea Level, [in:] The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer, Cham, 253-263. https://doi.org/10.1007/978-3-319-16006-1_14
- 62. Gudelis, V., 1967. The morphogenetic types of Baltic Sea coasts. Baltica 3, 123-145 (In Russian).
- 63. Gudelis, V., 1998. Offshore and nearshore of Lithuania. Vilnius, 444 pp. (in Lithuanian). Haapala, J.J., Ronkainen, I., Schmelzer, N., Sztobryn, M., 2015. Recent change–sea ice, [in:] The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies. Springer, Cham, 145-153. https://doi.org/10.1007/978-3-319-16006-1_8
- 64. Harff, J., Meyer, M., 2011. Coastlines of the Baltic Sea –zones of competition between geological processes and a changing climate: examples from the southern Baltic. [in:] Harff, J., Björck, S., Hoth, P. (Eds.), The Baltic Sea Basin, Springer, Berlin, Heidelberg, 149-164.
- 65. Harff, J., Deng, J.J., Dudzinska-Nowak, J., Fröhle, P., Groh, A., Hünicke, B., Soomere, T., Zhang, W.Y., 2017. What Determines the Change of Coastlines in the Baltic Sea? [in:] Harff, J., Furmańczyk, K., von Storch, H. (Eds), Coastline Changes of the Baltic Sea from South to East: Past and Future Projection. Coastal Research Library 19, 15-35. https://doi.org/10.1007/978-3-319-49894-2_2
- 66. HELCOM, 2013. Climate change in the Baltic Sea Area: HELCOM thematic assessment in 2013. Baltic Sea Environ. Proc. No. 137.
- 67. HELCOM/Baltic Earth 2021. Climate Change in the Baltic Sea. 2021 Fact Sheet. Baltic Sea Environ. Proc. 180.
- 68. Hoffmann, G., Lampe, R., Barnasch, J., 2005. Postglacial evolution of coastal barriers along the West Pomeranian coast, NE Germany. Quaternary International 133-134, 47-59. https://doi.org/10.1016/j.quaint.2004.10.014
- 69. Huang, W.P., 2022. Impact of coastal development on coastal morphology of Taiwan: Case studies and proposed countermeasures. J. Sea Res. 186, 102234. https://doi.org/10.1016/j.seares.2022.102234
- 70. Hünicke, B., Zorita, E., Soomere, T., Madsen, K.S., Johansson, M., Suursaar, Ü., 2015. Recent Change – Sea Level and Wind Waves, [in:] The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies, Springer, Cham, 155-185. https://doi:10.1007/978-3-319-16006-1_9
- 71. IPCC, 2019. Summary for Policymakers, [in:] Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegrı́a, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer. N.M. (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge Univ. Press, Cambridge, UK and New York, NY, USA, 3-35. https://doi.org/10.1017/9781009157964.001
- 72. Jaagus, J., 2006. Trends in sea ice conditions in the Baltic Sea near the Estonian coast during the period 1949/1950–2003/2004 and their relationships to large-scale atmospheric circulation. Boreal Environ. Res. 11, 169-183.
- 73. Jaagus, J., Kull, A., 2011. Changes in surface wind directions in Estonia during 1966-2008 and their relationships with large-scale atmospheric circulation. Estonian J. Earth Sci. 60 (4), 220-231. https://doi.org/10.3176/earth.2011.4.03
- 74. Jaagus, J., Suursaar, Ü., 2013. Long-term storminess and sea level variations on the Estonian coast of the Baltic Sea in relation to large-scale atmospheric circulation. Estonian J. Earth Sci. 62 (2), 73-92. https://doi.org/10.3176/earth.2013.07
- 75. Jackson, D.W.T., Costas, S., Gonzalez-Villanueva, R., Cooper, A., 2019. A global ’greening’ of coastal dunes: An integrated consequence of climate change?. Glob. Planet. Change, 182, 103026. https://doi:10.1016/j.gloplacha.2019.103026
- 76. Jankowski, M.Z., Soomere, T., Parnell, K.E., Eelsalu, M., 2024. Alongshore sediment transport in the Eastern Baltic Sea. J. Coast. Res. 113 (Sp. Iss.), 261-265. https://doi.org/10.2112/JCR-SI113-052.1
- 77. Janušaitė, R., Jarmalavičius, D., Jukna, L., Žilinskas, G., Pupienis, D., 2022. Analysis of interannual and seasonal nearshore bar behaviour observed from decadal optical satellite data in the Curonian Spit, Baltic Sea. Remote Sens. 14 (14), 3423. https://doi.org/10.3390/rs14143423
- 78. Jarmalavičius, D., Šmatas, V., Stankunavičius, G., Pupienis, D., Žilinskas, G., 2016. Factors controlling coastal erosion during storm events. J. Coast. Res., 75 (Sp. Iss.), 1112-1116.
- 79. Järvelill, J.I., 2019. Development of the Narva-Joesuu beach, mineral composition of beach deposits and destruction of the pier, southeastern coast of the Gulf of Finland. Open Geosci. 11 (1), 961-968. https://doi.org/10.1515/geo-2019-0074
- 80. Jensen, J., Schwarzer, K., 2013. Germany, [in:] Pranzini, E., Williams, A. (Eds.), Coastal erosion and protection in Europe. Routledge, London, 108-135.
- 81. Julge, K., Eelsalu, M., Grünthal, E., Talvik, S., Ellmann, A., Soomere, T., Tõnisson, H., 2014. Combining airborne and terrestrial laser scanning to monitor coastal processes, [in:] 2014 IEEE/OES Baltic International Symposium “Measuring and Modeling of Multi-Scale Interactions in the Marine Environment”, May 26-29, 2014, Tallinn, Estonia. IEEE Conf. Proc. https://doi.org/10.1109/BALTIC.2014.6887874
- 82. Kall, T., Oja, T., Tänavsuu, K., 2014. Postglacial land uplift in Estonia based on four precise levelings. J. Tectonophys. 610, 25-38. https://doi.org/10.1016/j.tecto.2013.10.002
- 83. Karaliunas, V., Jarmalavičius, D., Pupienis, D., Janušaitė, R., Zilinskas, G., Karlonienė, D., 2020. Shore nourishment impact on coastal landscape transformation: An example of the Lithuanian Baltic Sea coast. J. Coast. Res. 95 (Sp. Iss.), 840-844. https://doi.org/10.2112/SI95-163.1
- 84. Karmanov, K., Burnashov, E., Chubarenko, B., 2018. Contemporary dynamics of the sea shore of Kaliningrad Oblast. Arch. Hydro-Eng. Environ. Mech. 65 (2), 143-159. https://doi.org/10.1515/heem-2018-0010
- 85. Keevallik, S., 2003. Possibilities of reconstruction of the wind regime over Tallinn Bay. Proc. Estonian Acad. Sci. Eng. 9 (3), 209-219.
- 86. Keevallik, S., 2011. Shifts in meteorological regime of late winter and early spring in Estonia during recent decades. Theor. Appl. Climatol. 105, 209-215. https://doi.org/10.1007/s00704-010-0356-x
- 87. Keevallik, S., Soomere, T., 2014. Regime shifts in the surface-level average air flow over the Gulf of Finland during 1981–2010. Proc. Estonian Acad. Sci. 63 (4), 428-437. https://doi.org/10.3176/proc.2014.4.08
- 88. Kelpšaitė, L., Dailidienė, I., 2011. Influence of wind wave climate change on coastal processes in the eastern Baltic Sea. J. Coast. Res. 64 (Sp. Iss.), 220-224.
- 89. Kelpšaitė, L., Dailidiene, I., Soomere, T., 2011. Changes in wave dynamics at the south-eastern coast of the Baltic Proper during 1993–2008. Boreal Environ. Res. 16 (Suppl A), 220-232.
- 90. Kelpšaitė-Rimkienė, L., Parnell, K.E., Žaromskis, R., Kondrat, V., 2021. Cross-shore profile evolution after an extreme erosion event – Palanga, Lithuania. J. Mar. Sci. Eng. 9, 38. https://doi.org/10.3390/jmse9010038
- 91. Kl̦avinš, M., Avotniece, Z., Rodinovs, V., 2016. Dynamics and impacting factors of ice regimes in Latvia inland and coastal waters. Proc. Latvian Acad. Sci. B 70 (6/705), 400-408. https://doi.org/10.1515/prolas-2016-0059
- 92. Knaps, R.J., 1966. Sediment transport near the coasts of the Eastern Baltic, [in:] Development of sea shores under the conditions of oscillations of the Earth’s crust. Valgus, Tallinn, 21-29 (in Russian).
- 93. Kobelyanskaya, J., Bobykina, V.P., Piekarek-Jankowska, H., 2011. Morphological and lithodynamic conditions in the marine coastal zone of the Vistula Spit (Gulf of Gdańsk, Baltic Sea). Oceanologia 53 (4), 1027-1043. https://doi.org/10.5697/oc.53-4.1027
- 94. Kondrat, V., Šakurova, I., Baltranaitė, E., Kelpšaitė-Rimkienė, L., 2021. Natural and anthropogenic factors shaping the shoreline of Klaipeda, Lithuania. J. Mar. Sci. Eng. 9 (12), 1456. https://doi.org/10.3390/jmse9121456
- 95. Kont, A., Endjärv, E., Jaagus, J., Lode, E., Orviku, K., Ratas, U., Rivis, R., Suursaar, Ü., Tõnisson, H., 2007. Impact of climate change on Estonian coastal and inland wetlands – a summary with new results. Boreal Environ. Res. 12, 653-671.
- 96. Kont, A., Jaagus, J., Orviku, K., Palginõmm, V., Ratas, U., Rivis, R., Suursaar, Ü., Tõnisson, H., 2011. Natural development and human activities on Saaremaa Island (Estonia) in the context of climate change and integrated coastal zone management, [in:] Schernewski, G., Hofstede, J., Neumann, T. (Eds.), Global change and Baltic coastal zones, Coastal Res. Library 1, Springer, 117-134. https://doi.org/10.1007/978-94-007-0400-8_8
- 97. Kont, A., Tõnisson, H., Jaagus, J., Suursaar, Ü., Rivis, R., 2022. Eesti randade areng viimastel aastakümnetel kliimaja rannikumere hüdrodünaamiliste muutuste tagajärjel. Terasmaa, J., Truus, L., Kont, A. (Toim.) 30 aastat keskkonnaökoloogiat. Ökoloogia keskus 1992–2022. (9-58). Tallinna Ülikool. (Tallinna Ülikooli ökoloogia instituudi/keskuse publikatsioonid; 13).
- 98. Kosyan, R., Krylenko, M., Ryabchuk, D., Chubarenko, B., 2013. Russia, [in:] Pranzini, E., Williams, A. (Eds.), Coastal erosion and protection in Europe, Routledge, London, 9-30.
- 99. Kotta, J., Herkül, K., Jaagus, J., Kaasik, A., Raudsepp, U., Alari, V., Arula, T., Haberman, J., Järvet, A., Kangur, K., Kont, A., Kull, A., Laanemets, J., Maljutenko, I., Männik, A., Nõges, P., Nõges, T., Ojaveer, H., Peterson, A., Reihan, A., Rõõm, R., Sepp, M., Suursaar, Ü., Tamm, O., Tamm, T., Tõnisson, H., 2018. Linking atmospheric, terrestrial and aquatic environments: Regime shifts in the Estonian climate over the past 50 years. PLoS ONE 13 (12), e0209568. https://doi.org/10.1371/journal.pone.0209568
- 100. Kovaleva, O., Eelsalu, M., Soomere, T., 2017. Hot-spots of large wave energy resources in relatively sheltered sections of the Baltic Sea coast. Renew. Sustain. Energy Rev. 74, 424-437. https://doi.org/10.1016/j.rser.2017.02.033
- 101. Krek, A., Stont, Z., Ulyanova, M., 2016. Alongshore bed load transport in the southeastern part of the Baltic Sea under changing hydrometeorological conditions: Recent decadal data. Regional Stud. Mar. Sci. 7, 81-87. https://doi.org/10.1016/j.rsma.2016.05.011
- 102. Kudryavtseva, N., Räämet, A., Soomere, T., 2020. Coastal flooding: Joint probability of extreme water levels and waves along the Baltic Sea coast. J. Coast. Res. 95 (Sp. Iss.), 1146-1151. https://doi.org/10.2112/SI95-222.1
- 103. Kudryavtseva, N., Soomere, T., 2017. Satellite altimetry reveals spatial patterns of variations in the Baltic Sea wave climate. Earth Syst. Dynam. 8, 697-706. https://doi.org/10.5194/esd-8-697-2017
- 104. Kudryavtseva, N., Soomere, T., Männikus, R., 2021. Nonstationary analysis of water level extremes in Latvian waters, Baltic Sea, during 1961–2018. Nat. Hazards Earth Syst. Sci. 21 (4), 1279-1296. https://doi.org/10.5194/nhess-21-1279-2021
- 105. Kupfer, S., MacPherson, L.R., Hinkel, J., Arns, A., Vafeidis, A.T., 2024. A comprehensive probabilistic flood assessment accounting for hydrograph variability of ESL events. J. Geophys. Res. 129 (1), e2023JC019886. https://doi.org/10.1029/2023JC019886
- 106. Lampe, R., Naumann, M., Meyer, H., Janke, W., Ziekur, R., 2011, Holocene evolution of the southern Baltic Sea coast and interplay of sea-level variation, isostasy, accommodation and sediment supply, [in:] Harff J., Björck S., Hoth P., (Eds.), The Baltic Sea Basin. Springer, Berlin, Heidelberg, 233-251. https://doi.org/10.1007/978-3-642-17220-5_12
- 107. Lapinskis, J., 2010. Dynamic of the Kurzeme coast of the Baltic proper. Ph.D. Thesis, Univ. Latvia Press, Riga, 67 pp.
- 108. Larson, M., Hanson, H., 2013. Sweden, [in:] Pranzini, E., Williams, A. (Eds.), Coastal erosion and protection in Europe, Routledge, London, 31-46.
- 109. Lehmann, A., Getzlaff, K., Harlaß, J., 2011. Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Clim. Res. 46 (2), 185-196. https://doi.org/10.3354/cr00876
- 110. Leppäranta, M., 2012. Environmental impacts of land-ice interaction in the northern Baltic Sea, [in:] Li, Z., Lu, P. (Eds.), Meeting 21st IAHR International Symposium on Ice Location, Dalian University of Technology, Dalian, China, June 11-15, 2012. Ice Research for Sustainable Environment, Vol. I & II, 532-541.
- 111. Leppäranta, M., 2013. Land-ice interaction in the Baltic Sea. Estonian J. Earth Sci. 62 (1), 2-14. https://doi.org/10.3176/earth.2013.01
- 112. Leppäranta, M., Myrberg, K., 2009. Physical Oceanography of the Baltic Sea. Springer, Berlin, 378 pp. https://doi.org/10.1007/978-3-540-79703-6
- 113. Lorenz, M., Gräwe, U., 2023. Uncertainties and discrepancies in the representation of recent storm surges in a non-tidal semi-enclosed basin: A hind-cast ensemble for the Baltic Sea. Ocean Sci. 19 (6), 1753-1771. https://doi.org/10.5194/os-19-1753-2023
- 114. Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., Aarninkhof, S., 2018. The state of the world’s beaches. Sci. Rep. 8, 6641. https://doi.org/10.1038/s41598-018-24630-6
- 115. Łabuz, T., 2013. Polish coastal dunes – affecting factors and morphology. Landform Anal. 22, 33-59. https://doi.org/10.12657/landfana.022.004
- 116. Łabuz, T.A., 2005. Present-day dune environment dynamics on coast of Swina Gate Barrier (West Polish coast). Estuar. Coast. Shelf Sci. 62 (3), 507-520. https://doi.org/10.1016/j.ecss.2004.09.014
- 117. Łabuz, T.A., 2009. The West Pomerania coastal dunes – alert state of their development. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 160 (2), 113-122. https://doi.org/10.1127/1860-1804/2009/0160-0113
- 118. Łabuz, T.A., 2014. Erosion and its rate on an accumulative Polish dune coast: the effects of the January 2012 storm surge. Oceanologia 56 (2), 307-326. https://doi.org/10.5697/oc.56-2.307
- 119. Łabuz, T.A., 2015. Environmental Impacts – Coastal Erosion and Coastline Changes, [in:] The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer, Cham, 381-396. https://doi.org/10.1007/978-3-319-16006-1_20
- 120. Łabuz, T.A., 2022. Storm surges versus shore erosion: 21 years (2000–2020) of observations on the Swina Gate sandbar (southern Baltic coast). Quaest. Geogr. 41 (3), 5-31. https://doi.org/10.2478/quageo-2022-0023
- 121. Łabuz, T.A., 2023a. Causes and effects of coastal dunes erosion during storm surge Axel in January 2017 on the southern Baltic Polish coast. Quaest. Geogr. 42 (3), 67-87. https://doi.org/10.14746/quageo-2023-0024
- 122. Łabuz, T.A., 2023b. Influence of meteorological conditions in autumn/winter 2021–2022 on the development of storm surges and the dune erosion on the Polish Baltic coast as a result of climate changes. Studia Quaternaria 40 (2), 93-114. https://doi.org/10.24425/sq.2023.148035
- 123. Łabuz, T.A., Grunewald, R., Bobykina, V., Chubarenko, B., Česnulevičius, A., Bautrėnas, A., Morkūnaitė, R., Tõnisson, H., 2018. Coastal dunes of the Baltic Sea shores: A review. Quaest. Geogr 37 (1), 47-71. https://doi.org/10.2478/quageo-2018-0005
- 124. Łabuz, T.A., Kowalewska-Kalkowska, H., 2011. Coastal erosion by the heavy storm surge of November 2004 in the southern Baltic Sea. Clim. Res. 48 (1), 93-101. https://doi.org/10.3354/cr00927
- 125. Madsen, K.S., Høyer, J.L., Suursaar, Ü., She, J., Knudsen, P., 2019. Sea level trends and variability of the Baltic Sea from 2D statistical reconstruction and altimetry. Front. Earth Sci. 7, 243. https://doi.org.10.3389/feart.2019.00243
- 126. Mahmoud, A.M.A., Hussain, E., Novellino, A., Psimoulis, P., Marsh, S., 2021. Monitoring the dynamics of Formby sand dunes using airborne LiDAR DTMs. Remote Sens. 13, 4665. https://doi.org/10.3390/rs13224665
- 127. Männikus, R., Soomere, T., Kudryavtseva, N., 2019. Identification of mechanisms that drive water level extremes from in situ measurements in the Gulf of Riga during 1961–2017. Cont. Shelf Res. 182, 22-36. https://doi.org/10.1016/j.csr.2019.05.014
- 128. Männikus, R., Soomere, T., Viška, M., 2020. Variations in the mean, seasonal and extreme water level on the Latvian coast, the eastern Baltic Sea, during 1961–2018. Estuar. Coast. Shelf Sci. 245, 106827. https://doi.org/10.1016/j.ecss.2020.106827
- 129. Masselink, G., Hughes, M., Knight, J., 2011. Introduction to Coastal Processes and Geomorphology. 2nd ed., Hodder Education, 416 pp.
- 130. McInnes, K.L., Hubbert, G.D., 2003. A numerical modelling study of storm surges in Bass Strait. Australian Meteorol. Mag. 52, 3, 143-156.
- 131. McInnes, K.L., Walsh, K.J.E., Hubbert, G.D., Beer, T., 2003. Impact of sea-level rise and storm surges on a coastal community. Nat. Hazards. 30 (2), 187-207. https://doi.org/10.1023/A:1026118417752
- 132. Meier, H. E. M., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E., Elmgren, R., Myrberg, K., Ahola, M. P., Bartosova, A., Bonsdorff, E., Börgel, F., Capell, R., Carlén, I., Carlund, T., Carstensen, J., Christensen, O. B., Dierschke, V., Frauen, C., Frederiksen, M., Gaget, E., Galatius, A., Haapala, J. J., Halkka, A., Hugelius, G., Hünicke, B., Jaagus, J., Jüssi, M., Käyhkö, J., Kirchner, N., Kjellström, E.,Kulinski, K., Lehmann, A., Lindström, G., May, W., Miller, P. A., Mohrholz, V., Müller-Karulis, B., Pavón-Jordán, D., Quante, M., Reckermann, M., Rutgersson, A., Savchuk, O. P., Stendel, M., Tuomi, L., Viitasalo, M., Weisse, R., Zhang, W., 2022. Climate change in the Baltic Sea region: A summary. Earth Syst. Dynam. 13, 457-593. https://doi.org/10.5194/esd-13-457-2022
- 133. Merkouriadi, I., Leppäranta, M., 2014. Long-term analysis of hydrography and sea-ice data in Tvärminne, Gulf of Finland, Baltic Sea. Clim. Change 124, 849-859. https://doi.org/10.1007/s10584-014-1130-3
- 134. Milne, G.A., Gehrels, W.R., Hughes, C.W., Tamisiea, M.E., 2009. Identifying the causes of sea-level change. Nat. Geosci. 2, 471-478. https://doi.org/10.1038/ngeo544
- 135. Miner, J.J., Powell, R.D., 1991. An evaluation of ice-rafted erosion caused by an icefoot complex, southwestern Lake-Michigan, USA. Artic and Alpine Res. 23 (3), 320-327. https://doi.org/10.2307/1551610
- 136. Musielak, S., Furmańczyk, K., Bugajny, N., 2017. Factors and processes forming the Polish southern Baltic Sea coast on various temporal and spatial scales, [in:] Harff, J., Furmańczyk, K., von Storch, H. (Eds.), Coastline Changes of the Baltic Sea from South to East. Coast. Res. Lib. 19, Springer, Cham, 69-85. https://doi.org/10.1007/978-3-319-49894-2_5
- 137. Najafzadeh, F., Kudryavtseva, N., Soomere, T., 2021. Effects of large-scale atmospheric circulation on the Baltic Sea wave climate: application of the EOF method on multi-mission satellite altimetry data. Clim. Dynam. 57 (11), 3465-3478. https://doi.org/10.1007/s00382-021-05874-x
- 138. Najafzadeh, F., Kudryavtseva, N., Soomere, T., Giudici, A., 2022. Effect of ice cover on wave statistics and wave-driven processes in the northern Baltic Sea. Boreal Environ. Res. 27, 97-116. http://www.borenv.net/BER/archive/pdfs/ber27/ber27-097-116.pdf
- 139. Najafzadeh, F., Soomere, T., 2024. Impact of changes in sea ice cover on wave climate of semi-enclosed seasonally ice-covered water bodies on temperate latitudes: A case study in the Gulf of Riga. Estonian J. Earth Sci. 73 (1), 26-36. https://doi.org/10.3176/earth.2024.03
- 140. Navrotskaya, S.E., Chubarenko, B.V., 2012. On the sea level rise in the Russian part of the Vistula Lagoon. Russian Meteorology and Hydrology 39(46), 37. https://doi.org/10.3103/S1068373912010062
- 141. Nerem, R.S., Beckley, B.D., Fasullo, J.T., Hamlington B.D., Masters, D., Mitchum, G.T., 2018. Climate-change-driven accelerated sea-level rise. Proc. Natl. Acad. Sci. U.S.A, 115 (9), 2022–2025. https://doi.org/10.1073/pnas.1717312115
- 142. Nicholls, R.J., Cazenave, A., 2010. Sea-level rise and its impact on coastal zones. Science, 328 (5985), 1517-1520. https://doi.org/10.1126/science.118578
- 143. Nicholls, R.J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A.T., Meyssignac, B., Hanson, S.E., Merkens, J-L., Fang, J., 2021. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nat. Clim. Chang. 11, 338-342. https://doi.org/10.1038/s41558-021-00993-z
- 144. Oppenheimer, M., Glavovic, B.C., Hinkel, J., van de Wal, R., Magnan, A.K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R.M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., Sebesvari, Z., 2019. Sea level rise and implications for low-lying islands, coasts and communities, [in:] Pörtner, H.-O., Roberts, D.C., Masson Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegrı́a, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer. N.M. (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge Univ. Press, Cambridge, UK, New York, NY, USA, 321-445. https://doi.org/10.1017/9781009157964.00
- 145. Orviku, K., 2018. Beaches and coasts. Tallinn University Publishers (in Estonian). Orviku, K., Jaagus, J., Kont, A., Ratas, U., Rivis, R., 2003. Increasing activity of coastal processes associated with climate change in Estonia. J. Coast. Res. 19 (2), 364-375.
- 146. Orviku, K., Jaagus, J., Tõnisson, H., 2011. Sea ice shaping the shores. J. Coastal Res. 64 (Sp. Iss.), 681-685.
- 147. Orviku, K., Suursaar, Ü., Tõnisson, H., Kullas, T., Rivis, R., Kont, A., 2009. Coastal changes in Saaremaa Island, Estonia, caused by winter storms in 1999, 2001, 2005 and 2007. J. Coast. Res. 65 (Sp. Is.), 1651-1655.
- 148. Osadczuk, A., Borówka, R.K., Dudzińska-Nowak, J. 2024. Two millennia of natural and anthropogenic changes of the Polish Baltic coast. Oxford Research Encyclopedia of Climate Science. https://doi.org/10.1093/acrefore/9780190228620.013.896
- 149. Ostrowski, R., Pruszak Z., Babakov A., Chubarenko B., 2012. Anthropogenic effects on coastal sediment fluxes in a nontidal gulf system. J. Waterway Div.-ASCE, 138 (6), 491 -500. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000156
- 150. Ostrowski, R., Pruszak, Z., Babakov, A., 2014. Condition of south-eastern Baltic Sea shores and methods of protecting them. Arch. Hydro-Eng. Environ. Mech. 61 (1–2), 17-37. https://doi.org/10.1515/heem-2015-0002
- 151. Ostrowski, R., Schönhofer, J., Szmytkiewicz, P., 2016. South Baltic representative coastal field surveys, including monitoring at the Coastal Research Station in Lubiatowo, Poland. J. Marine Syst. 162, 89-97. https://doi.org/10.1016/j.jmarsys.2015.10.006
- 152. Overeem, I., Anderson, R.S., Wobus, C.W., Clow, G.D., Urban, F.E., Matell, N., 2011. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 38, 17. https://doi.org/10.1029/2011GL048681
- 153. Pettersson, H., Lindow, H., Brüning, T., 2013. Wave climate in the Baltic Sea 2012. Baltic Sea Environment Fact Sheet 2013. https://helcom.fi/wp-content/uploads/2019/08/Wave_climate_in_the_Baltic_Sea_2012_BSEFS2013.pdf
- 154. Pilkey, O.H., Cooper, J.A.G., 2014. Are natural beaches facing extinction?, J. Coast. Res. 70 (Sp. Iss. 1), 431-436. https://doi.org/10.2112/SI70-073.1
- 155. Pindsoo, K., Soomere, T., 2015. Contribution of wave set-up into the total water level in the Tallinn area. Proc. Est. Acad. Sci. 64 (3S), 338-348. https://doi.org/10.3176/proc.2015.3S.03
- 156. Pindsoo, K., Soomere, T., 2020. Basin-wide variations in trends in water level maxima in the Baltic Sea. Cont. Shelf Res. 193, 104029. https://doi.org/10.1016/j.csr.2019.104029
- 157. Polyak, L., Alley, R.B., Andrews, J.T., Brigham-Grette, J., Cronin, T.M., Darby, D.A., Dyke, A.S., Fitzpatrick, J.J., Funder, S., Holland, M., Jennings, A.E., Miller, G.H., O’Regan, M., Savelle, J., Serreze, M., St John, K., White, J.W.C., Wolff, E., 2010. History of sea ice in the Arctic. Quatern. Sci. Rev. 29 (15–16), 1757-1778. https://doi.org/10.1016/j.quascirev.2010.02.010
- 158. Prime, T., Brown, J.M., Plater, A.J., 2015. Physical and economic impacts of sea-level rise and low probability flooding events on coastal communities. PLoS ONE 10 (2), e0117030. https://doi.org/10.1371/journal.pone.0117030
- 159. Pruszak, Z., Zawadzka, E., 2005. Vulnerability of Poland’s coast to sea-level rise. Coast. Eng. 47 (2–3), 131-155. https://doi.org/10.1142/S0578563405001197
- 160. Pruszak, Z., Zawadzka, E., 2008. Potential implications of sea-level rise for Poland. J. Coast. Res. 24 (2), 410-422. https://doi.org/10.2112/07A-0014.1
- 161. Pupienis, D., Jarmalavičius, D., Zilinskas, G., Fedorovic, J., 2024. Beach nourishment experiment in Palanga, Lithuania. J. Coast. Res. 70 (Sp. Iss.), 490-495. https://doi.org/10.2112/SI70-083.1
- 162. Pye, K., Blott, S.J., 2008. Decadal-scale variation in dune erosion and accretion rates: An investigation of the significance of changing storm tide frequency and magnitude on the Sefton coast, UK. Geomorphology 102 (3–4), 652-666. https://doi.org/10.1016/j.geomorph.2008.06.011
- 163. Ranasinghe, R., 2016. Assessing climate change impacts on open sandy coasts: A review. Earth-Sci. Rev. 160, 320-332. https://doi.org/10.1016/j.earscirev.2016.07.011
- 164. Rantanen, M., van den Broek, D., Cornér, J., Sinclair, V.A., Johansson, M.M., Särkkä, J., Laurila, T..K., Jylhä, K., 2024. The impact of serial cyclone clustering on extremely high sea levels in the Baltic Sea. Geophys. Res. Lett. 51(6), e2023GL107203. https://doi.org/10.1029/2023GL107203
- 165. Räämet A., Soomere T., Zaitseva-Pärnaste I., 2010. Variations in extreme wave heights and wave directions in the north-eastern Baltic Sea. Proc. Estonian Acad. Sci. 59 (2), 182-192. https://doi.org/10.3176/proc.2010.2.18
- 166. Räämet, A., Soomere, T., 2011. Spatial variations in the wave climate change in the Baltic Sea. J. Coast. Res. 64 (Sp. Iss.), 240-244.
- 167. Räämet, A., Soomere, T., 2021. Spatial patterns of quality of historical wave climate reconstructions for the Baltic Sea. Boreal Environ. Res. 26, 29-41.
- 168. Reckermann, M., Omstedt, A., Soomere, T., Aigars, J., Akhtar, N., Bełdowska, M., Bełdowski, J., Cronin, T., Czub, M., Eero, M., Hyytiäinen, K.P., Jalkanen, J.-P., Kiessling, A., Kjellström, E., Kuliński, K., Guo Larsén, X., McCrackin, M., Meier, H.E.M., Oberbeckmann, S., Parnell, K., Pons Seres de Brauwer, C., Poska, A., Saarinen, J., Szymczycha, B., Undeman, E., Wörman, A., Zorita, E., 2022. Human impacts and their interactions in the Baltic Sea region. Earth Syst. Dynam. 13, 1-80. https://doi.org/10.5194/esd-13-1-2022
- 169. Reiniks, M., Kalinka, M., Lazdans, J., Klive, J., Ratkus, B., 2010. Valsts augstuma izejas lımenanoteikšana (Determining the state height level output data). Sci. J. Riga Tech. Univ. Geomatics, 7-13.
- 170. Rosentau, A., Meyer, M., Harff, J., Dietrich, R., Richter, A., 2007. Relative sea level change in the Baltic Sea since the littorina transgression. Zeitschrift für Geologische Wissenschaften, 35 (1/2), 3-16.
- 171. Rosentau, A., Harff, J., Oja, T., Meyer, M., 2012. Postglacial rebound and relative sea level changes in the Baltic Sea since the Litorina transgression. Baltica 25 (2), 113-120. https://doi.org/10.5200/baltica.2012.25.11
- 172. Rotnicka, J., 2011. Factors controlling the development of foredunes along the Leba Barrier on the South Baltic coast of Poland. J. Coast. Res. 64 (Sp. Iss.), 308-313.
- 173. Rotnicki, K., Rotnicka, J., 2010. Poland. [in:] Bird, E.C.F. (ed.), Encyclopedia of the World’s Coastal Landforms, Springer, Dordrecht, 627-638. https://doi.org/10.1007/978-1-4020-8639-7_107
- 174. Różyński, G., 2005. Long term shoreline response of a non-tidal, barred coast. Coast. Eng. 52(1), 79-91. https://doi.org/10.1016/j.coastaleng.2004.09.007
- 175. Różyński, G., 2010. Long-term evolution of Baltic Sea wave climate near a coastal segment in Poland; its drivers and impacts. Ocean Eng., 37 (2–3), 186-199. https://doi.org/10.1016/j.oceaneng.2009.11.008
- 176. Różyński, G., 2023. Coastal protection challenges after heavy storms on the Polish coast. Cont. Shelf Res. 266, 105080. https://doi.org/10.1016/j.csr.2023.105080
- 177. Różyński, G., Lin, J.G., 2021. Can climate change and geological past produce enhanced erosion? A case study of the Hel Peninsula, Baltic Sea, Poland. Appl. Ocean Res. 115, 102852. https://doi.org/10.1016/j.apor.2021.102852
- 178. Ryabchuk, D., Kolesov, A., Chubarenko, B., Spiridonov, M., Kurennoy, D., Soomere, T. 2011a. Coastal erosion processes in the eastern Gulf of Finland and their links with geological and hydrometeorological factors. Boreal Environ. Res. 16 (Suppl. A), 117-137.
- 179. Ryabchuk, D., Leontyev, I., Sergeev, A., Nesterova, E., Sukhacheva, L., Zhamoida, V., 2011b. The morphology of sand spits and the genesis of longshore sand waves on the coast of the eastern Gulf of Finland. Baltica 24 (1), 13-24.
- 180. Ryabchuk, D., Sergeev, A., Burnashev, E., Khorikov, V., Neevin, I., Kovaleva, O., Budanov, L., Zhamoida, V., Danchenkov, A., 2020. Coastal processes in the Russian Baltic (eastern Gulf of Finland and Kaliningrad area). Q. J. Eng. Geol. Hydrogeol. 54 (1), qjegh2020-036. https://doi.org/10.1144/qjegh2020-036
- 181. Ryabchuk, D., Spiridonov, M., Zhamoida, V., Nesterova, E., Sergeev, A., 2012. Long term and short term coastal line changes of the eastern Gulf of Finland. Problems of coastal erosion. J. Coast. Conserv. 16, 233-242. https://doi:10.1007/s11852-010-0105-4
- 182. Šakurova, I., Kondrat, V., Baltranaitė, E., Vasiliauskienė, E., Kelpsaitė-Rimkienė, L., 2023. Assessment of coastal morphology on the south-eastern Baltic Sea coast: The case of Lithuania. Water, 15 (1), 79. https://doi.org/10.3390/w15010079
- 183. Sallenger, A., Doran, K., How, P., 2012. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Clim. Change 2, 884-888. https://doi.org/10.1038/nclimate1597
- 184. Seleem, T.A., Parcharidis, I., Foumelis, M., Kourkouli, P., 2011. Detection of ground deformation over Sharm El- Sheikh-Ras Nasrani coastal zone, South Sinai (Egypt), by using time series SAR interferometry. J. African Earth Sci. 59(4–5), 373-383. https://doi.org/10.1016/j.jafrearsci.2011.01.009
- 185. Sergeev, A., Ryabchuk, D., Zhamoida, V., Leontyev, I., Kolesov, A., Kovaleva, O., Orviku, K., 2018. Coastal dynamics of the eastern Gulf of Finland, the Baltic Sea: toward a quantitative assessment. Baltica, 31 (1), 49-62. https://doi.org/10.5200/baltica.2018.31.05
- 186. Shepard, F., 1948. Submarine Geology. Harper & Brothers. Shirzaei, M., Freymueller, J., Törnqvist, T.E., Galloway, D.L., Dura, T., Minderhoud, P.S.J., 2021. Measuring, modelling and projecting coastal land subsidence. Nature Rev. Earth Environ. 2(1), 40-58. https://doi.org/10.1038/s43017-020-00115-x
- 187. Sinitsyn, A.O., Guegan, E., Shabanova, N., Kokin, O., Ogorodov, S., 2020. Fifty four years of coastal erosion and hydrometeorological parameters in the Varandey region, Barents Sea. Coast. Eng. 157, 103610. https://doi.org/10.1016/j.coastaleng.2019.103610
- 188. Sokolov, A.N., Chubarenko, B.V., 2020. Temporal variability of the wind wave parameters in the Baltic Sea in 1979–2018 based on the numerical modeling results. Phys. Oceanogr. 27(4), 352-363. https://doi.org/10.22449/1573-160X-2020-4-352-3 63
- 189. Sokolov, A., Chubarenko, B., 2024. Baltic sea wave climate in 1979–2018: Numerical modelling results. Ocean Eng. 297, 117088. https://doi.org/10.1016/j.oceaneng.2024.117088
- 190. Sooäär, J., Jaagus, J., 2007. Long-term changes in the sea ice regime in the Baltic Sea near the Estonian coast. Estonian J. Eng. 13 (3), 189-200. https://doi.org/10.3176/eng.2007.3.02
- 191. Soomere, T., 2003. Anisotropy of wind and wave regimes in the Baltic proper. J. Sea Res. 49 (4), 305-316. https://doi.org/10.1016/S1385-1101(03)00034-0
- 192. Soomere, T., 2024. Climate change and coastal processes in the Baltic Sea. Oxford Encyclopedia of Climate Science. https://doi.org/10.1093/acrefore/9780190228620.013.897
- 193. Soomere, T., Behrens, A., Tuomi, L., Nielsen, J.W., 2008. Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Nat. Hazards Earth Syst. Sci. 8 (1), 37-46. https://doi.org/10.5194/nhess-8-37-2008
- 194. Soomere, T., Bishop, S.R., Viška, M., Räämet, A., 2015a. An abrupt change in winds that may radically affect the coasts and deep sections of the Baltic Sea. Clim. Res. 62 (2), 163-171. https://doi.org/10.3354/cr01269
- 195. Soomere, T., Eelsalu, M., 2014. On the wave energy potential along the eastern Baltic Sea coast. Renew. Energy. 71, 221-233. https://doi.org/10.1016/j.renene.2014.05.025
- 196. Soomere, T., Eelsalu, M., Kurkin, A., Rybin, A., 2015b. Separation of the Baltic Sea water level into daily and multiweekly components. Cont. Shelf Res. 103, 23-32. https://doi.org/10.1016/j.csr.2015.04.018
- 197. Soomere, T., Eelsalu, M., Viigand, K., Giudici, A., 2024. Linking changes in the directional distribution of moderate and strong winds with changes in wave properties in the eastern Baltic proper. J. Coast. Res. 113 (Sp. Iss.), 190-194. https://doi.org/10.2112/JCR-SI113-038.1
- 198. Soomere, T., Keevallik, S., 2001. Anisotropy of moderate and strong winds in the Baltic Proper. Proc. Estonian Acad. Sci. Eng. 50 (1), 35-49. https://doi.org/10.3176/eng.2001.1.04
- 199. Soomere, T., Männikus, R., Pindsoo, K., Kudryavtseva, N., Eelsalu, M., 2017. Modification of closure depths by synchronisation of severe seas and high water levels. Geo-Mar. Lett. 37 (1), 35-46. https://doi.org/10.1007/s00367-016-0471-5
- 200. Soomere, T., Pindsoo, K., 2016. Spatial variability in the trends in extreme storm surges and weekly-scale high water levels in the eastern Baltic Sea. Cont. Shelf Res. 115, 53-64. https://doi.org/10.1016/j.csr.2015.12.016
- 201. Soomere, T., Pindsoo, K., Bishop, S.R., Käärd, A., Valdmann, A. 2013. Mapping wave set-up near a complex geometric urban coastline. Nat. Haz. Earth Syst. Sci. 13 (11), 3049-3061. https://doi.org/10.5194/nhess-13-3049-2013
- 202. Soomere, T., Räämet, A., 2011. Long-term spatial variations in the Baltic Sea wave fields. Ocean Sci. 7 (1), 141-150. https://doi.org/10.5194/os-7-141-2011
- 203. Soomere, T., Räämet, A., 2014. Decadal changes in the Baltic Sea wave heights. J. Marine Syst. 129, 86-95. https://doi.org/10.1016/j.jmarsys.2013.03.009
- 204. Soomere, T., Viška, M., 2014. Simulated wave-driven sediment transport along the eastern coast of the Baltic Sea. J. Marine Syst. 129, 96-105. https://doi.org/10.1016/j.jmarsys.2013.02.001
- 205. Soomere, T., Viška, M., Lapinskis, J., Räämet, A. 2011. Linking wave loads with the intensity of erosion along the coasts of Latvia. Estonian J. Eng. 17 (4), 359-374. https://doi.org/10.3176/eng.2011.4.06
- 206. Soomere T., Weisse R., Behrens, A,. 2012. Wave climate in the Arkona Basin, the Baltic Sea. Ocean Sci. 8 (2), 287-300. https://doi.org/.5194/os-8-287-2012
- 207. Sørensen, P., 2013. Denmark, [in:] Pranzini, E., Williams, A. (Eds.), Coastal erosion and protection in Europe, Routledge, London, 96-107.
- 208. Stive, M.J.F., Aarninkhof, S.G.J., Hamm, L., Hanson, H., Larson, M., Wijnberg, K.M., Nicholls, R.J., Capobianco, M., 2002. Variability of shore and shoreline evolution. Coast. Eng. 47 (2), 211-235. https://doi.org/10.1016/S0378-3839(02)00126-6
- 209. Su, J., Murawski, J., Nielsen, J.W., Madsen, K.S., 2024. Coinciding storm surge and wave setup: A regional assessment of sea level rise impact. Ocean Eng. 305, 117885. https://doi.org/10.1016/j.oceaneng.2024.117885
- 210. Suursaar, Ü., Sooäär, J., 2007. Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea. Tellus A 59 (2), 249-260. https://doi.org/10.1111/j.1600-0870.2006.00220.x
- 211. Suursaar, Ü., Jaagus, J., Kullas, T., 2006. Past and future changes in sea level near the Estonian coast in relation to changes in wind climate. Boreal Environ. Res. 11, 123-142.
- 212. Suursaar, Ü., Jaagus, J. Tõnisson, H., 2015. How to quantify long-term changes in coastal sea storminess?. Estuar. Coast. Shelf Sci. 156, 31-41. https://doi.org/10.1016/j.ecss.2014.08.001
- 213. Suursaar, Ü., Jaagus, J., Kont, A., Rivis, R., Tõnisson, H., 2008. Field observations on hydrodynamic and coastal geomorphic processes off Harilaid Peninsula (Baltic Sea) in winter and spring 2006-2007. Estuar. Coast. Shelf Sci. 80 (1), 31-41. https://doi.org/10.1016/j.ecss.2008.07.007
- 214. Suursaar, Ü., Kall, T., 2018. Decomposition of relative sea level variations at tide gauges using results from four Estonian precise levelings and uplift models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11 (6), 1966–1974. https://doi.org/10.1109/JSTARS.2018.2805833
- 215. Szmytkiewicz, P., Szmytkiewicz, M., Uscinowicz, G., 2021. Lithodynamic processes along the seashore in the area of planned nuclear power plant construction: A case study on Lubiatowo at Poland. Energies, 14 (6), 1636. https://doi.org/10.3390/en14061636
- 216. Toimil, A., Camus, P., Losada, I.J., Le Cozannet, G., Nicholls, R.J., Idier, D., Maspataud, A. 2020b. Climate change-driven coastal erosion modelling in temperate sandy beaches: Methods and uncertainty treatment. Earth-Sci. Rev. 202, 103110. https://doi.org/10.1016/j.earscirev.2020.103110
- 217. Toimil, A., Losada, I.J., Nicholls, R.J., Dalrymple, R.A., Stive, M.J.F., 2020a. Addressing the challenges of climate change risks and adaptation in coastal areas: A review. Coast. Eng. 156, 103611. https://doi.org/10.1016/j.coastaleng.2019.103611
- 218. Tõnisson, H., Orviku, K., Lapinskis, J., Gulbinskas, S., Žaromskis, R., 2013. The Baltic States – Estonia, Latvia and Lithuania. [in:] Pranzini, E., Williams, A. (Eds.), Coastal erosion and protection in Europe, Routledge, London, 47-80.
- 219. Tõnisson, H., Suursaar, Ü., Orviku, K., Jaagus, J., Kont, A., Willis, D.A., Rivis, R., 2011. Changes in coastal processes in relation to changes in large-scale atmospheric circulation, wave parameters and sea levels in Estonia. J. Coast. Res. 64 (Sp. Iss.), 701-705.
- 220. Tuomi L., Kahma K.K., Pettersson H. 2011. Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ. Res. 16 (6), 451-472.
- 221. Ulsts, V., 1998. Latvian Coastal Zone of the Baltic Sea. Riga, 96 pp. (In Latvian).
- 222. Ulsts, V., Bulgakova, J., 1998. General lithological and geomorphological map of Latvian shore zone – Baltic Sea and Gulf of Riga. State Geological Survey of Latvia, Riga. USACE, 2002. Coastal Engineering Manual. Department of the U.S. Army. U.S. Army Corps of Engineers, Manual No. 1110-2-1100.
- 223. Uścinowicz, G., Jegliński, W., Paczek, U., Szarafin, T., Szmytkiewicz, P., Uścinowicz, S., 2024. New insights into coastal processes in the southern Baltic Sea: relevance to modelling and future scenarios. Geol. Q. 68(1), 9. https://doi.org/10.7306/gq.1737
- 224. Valiela, I., Lloret, J., Bowyer, T., Miner, S., Remsen, D., Elrmstrom, E., Cogswell, D., Thieler, E.R., 2018. Transient coastal landscapes: rising sea level threatens salt marshes. Sci. Total Environ. 640-641, 1148-1156. https://doi.org/10.1016/j.scitotenv.2018.05.235
- 225. Vihma, T., Haapala, J., 2009. Geophysics of sea ice in the Baltic Sea: A review. Prog. Oceanogr. 80 (3–4), 129-148. https://doi.org/10.1016/j.pocean.2009.02.002
- 226. Viška, M., Soomere, T., 2013. Simulated and observed reversals of wave-driven alongshore sediment transport at the eastern Baltic Sea coast. Baltica 26 (2), 145-156. https://doi.org/10.5200/baltica.2013.26.15
- 227. Viška, M., Soomere, T., 2012. Hindcast of sediment flow along the Curonian Spit under different wave climates, [in:] Proceedings of the IEEE/OES Baltic 2012 International Symposium “Ocean: Past, Present and Future. Climate Change Research, Ocean Observation & Advanced Technologies for Regional Sustainability,” May 8–11, Klaipėda, Lithuania. IEEE Conf. Publ. https://doi.org/10.1109/BALTIC.2012.6249195
- 228. Vousdoukas, M.I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L.P., Feyen, L., 2018. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 9, 2360. https://doi.org/10.1038/s41467-018-04692-w
- 229. Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., Zorita, E. 2021. Sea level dynamics and coastal erosion in the Baltic Sea region. Earth Syst. Dynam. 12, 871-898. https://doi.org/10.5194/esd-12-871-2021
- 230. Weisse, R., von Storch, H., Feser, F., 2005. Northeast Atlantic and North Sea storminess as simulated by a regional climate model during 1958–2001 and comparison with observations. J. Clim. 18, 465-479. https://doi.org/10.1175/JCLI-3281.1
- 231. Wolski, T., Wiśniewski, B., 2020. Geographical diversity in the occurrence of extreme sea levels on the coasts of the Baltic Sea. J. Sea Res. 159, 101890. https://doi.org/10.1016/j.seares.2020.101890
- 232. Wolski, T., Wisniewski, B., 2021. Characteristics and long-term variability of occurrences of storm surges in the Baltic Sea. Atmosphere 12 (12), 1679. https://doi.org/10.3390/atmos12121679
- 233. Wolski, T., Wisniewski, B., 2023. Characteristics of seasonal changes of the Baltic Sea extreme sea levels. Oceanologia 65 (1), 151-170. https://doi.org/10.1016/j.oceano.2022.02.006
- 234. Wolski, T., Wiśniewski, B., Giza, A., Kowalewska-Kalkowska, H., Boman, H., Grabbi-Kaiv, S., Hammarklint, T., Holfort, J., Lydeikaitė, Ž., 2014. Extreme sea levels at selected stations on the Baltic Sea coast. Oceanologia 56 (2), 259-290. https://doi.org/10.5697/oc.56-2.259
- 235. Zakharchuk, E.A., Sukhachev, V.N., Tikhonova, N.A., 2021. Storm surges in the Gulf of Finland of the Baltic Sea. Vestnik of Saint Petersburg University, Earth Sciences, 66 (4), 781-805. https://doi.org/10.21638/spbu07.2021.408
- 236. Zawadzka-Kahlau, E., 1999. Tendencje rozwojowe polskich brzegów Bałtyku Południowego. IBW PAN, Gdańsk, 147 pp.
- 237. Zeidler, R.B., Wróblewski, A., Miętus, M., Dziadziuszko, Z., Cyberski J., 1995. Wind, wave, and storm surge regime at the Polish Baltic coast. J. Coast. Res. 22 (Sp. Iss.), 33-55.
- 238. Zhang, K., Douglas, B.C., Leatherman, S.P., 2004. Global warming and coastal erosion. Clim. Change 64 (1/2), 41-58. https://doi.org/10.1023/B:CLIM.0000024690.32682.48
- 239. Žilinskas, G., Janušaitė, R., Jarmalavičius, D., Pupienis, D., 2020. The impact of Klaipeda Port entrance channel dredging on the dynamics of coastal zone, Lithuania. Oceanologia 62 (4), 489-500. https://doi.org/10.1016/j.oceano.2020.08.002
- 240. Xu, K., Zhuang, Y.C., Bin, L.L., Wang, C.Y., Tian, F.C., 2023. Impact assessment of climate change on compound flooding in a coastal city. J. Hydrol. 617 (C), 129166. https://doi.org/10.1016/j.jhydrol.2023.129166xx
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62854934-e2df-4845-ab6b-a13d30fb843d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.