PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A systematic review of deep learning techniques for generating synthetic CT images from MRI data

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: This systematic review evaluates various studies on deep learning algorithms for generating synthetic CT images from MRI data, focusing on challenges in image quality and accuracy in current synthetic CT generation methods. Magnetic resonance imaging (MRI) is increasingly important in clinical settings due to its detailed visualization and noninvasive nature, making it a valuable tool for advancing patient care and identifying new areas for research. Materials and Methods: In this study we conducted a thorough search across several databases to identify studies published between January 2009 and January 2024 on using deep learning to generate synthetic CT (sCT) images from MRI for radiotherapy. The review focused on peer-reviewed, English-language studies and excluded unpublished, non-English, and irrelevant studies. Data on deep learning methods, input modalities, and anatomical sites were extracted and analyzed using a result-based synthesis approach. The review categorized 84 studies by anatomical site, following PRISMA guidelines for summarizing the findings. Results: The U-Net model is the most frequently used deep learning model for generating synthetic CT images from MRI data, with 34 articles highlighting its effectiveness in capturing fine details, Conditional GANs are also widely used, while Cycle-GANs and Pix2pix are effective in image translation tasks. Significant differences in performance metrics, such as MAE and PSNR, were observed across anatomical regions and models, highlighting the variability in accuracy among different deep learning approaches. Conclusion: This review underscores the need for continued refinement and standardization in deep learning approaches for medical imaging to address variability in performance metrics across anatomical regions and models.
Rocznik
Strony
20--38
Opis fizyczny
Bibliogr. 114 poz., rys., tab.
Twórcy
  • Department of Medical Physics, University of Ghana, Legon, Accra, Ghana
  • Department of Physics Education, University of Education, Winneba, Ghana
  • Department of Medical Physics, University of Ghana, Legon, Accra, Ghana
  • Ghana Atomic Energy Commission, Accra, Ghana
  • Department of Medical Physics, University of Ghana, Legon, Accra, Ghana
  • Department of Radiation Oncology, National Centre for Radiotherapy and Nuclear Medicine, Korle-Bu Teaching Hospital, Guggisberg Avenue, Korle-Bu, Accra, Ghana
Bibliografia
  • 1. Yousef R, Khan S, Gupta G, et al. U-Net-Based Models towards Optimal MR Brain Image Segmentation. Diagnostics. 2023;13(9):1624. https://doi.org/10.3390/diagnostics13091624
  • 2. Sharma DK, Chatterjee M, Kaur G, Vavilala S. Deep learning applications for disease diagnosis. Deep Learning for Medical Applications with Unique Data. Published online 2022:31-51. https://doi.org/10.1016/B978-0-12-824145-5.00005-8
  • 3. Rana M, Bhushan M. Machine learning and deep learning approach for medical image analysis: diagnosis to detection. Multimed Tools Appl. 2022;82(17):26731-26769. https://doi.org/10.1007/s11042-022-14305-w
  • 4. Wyawahare MV, Patil PM, Abhyankar HK. Image registration techniques: an overview. International Journal of Signal Processing, Image Processing and Pattern Recognition. 2009;2(3):11-28.
  • 5. Brady SL, Trout AT, Somasundaram E, Anton CG, Li Y, Dillman JR. Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction. Radiology. 2021;298(1):180-188. https://doi.org/10.1148/radiol.2020202317
  • 6. Zhang X, Zhang Y, Zhang G, et al. Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Front Oncol. 2022;12. https://doi.org/10.3389/fonc.2022.773840
  • 7. Kasula BY. Harnessing Machine Learning for Personalized Patient Care. Transactions on Latest Trends in Artificial Intelligence. 2023;4(4).
  • 8. Dias R, Torkamani A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 2019;11(1). https://doi.org/10.1186/s13073-019-0689-8
  • 9. Bullmore E. The future of functional MRI in clinical medicine. NeuroImage. 2012;62(2):1267-1271. https://doi.org/10.1016/j.neuroimage.2012.01.026
  • 10. Razzak MI, Naz S, Zaib A. Deep Learning for Medical Image Processing: Overview, Challenges and the Future. Lecture Notes in Computational Vision and Biomechanics. Published online November 14, 2017:323-350. https://doi.org/10.1007/978-3-319-65981-7_12
  • 11. Johnstone E, Wyatt JJ, Henry AM, et al. Systematic Review of Synthetic Computed Tomography Generation Methodologies for Use in Magnetic Resonance Imaging–Only Radiation Therapy. International Journal of Radiation Oncology*Biology*Physics. 2018;100(1):199-217. https://doi.org/10.1016/j.ijrobp.2017.08.043
  • 12. Acquah IK, Inkoom S, Hasford F. COMPARISON OF METHODS OF μ-MAP GENERATION: MR-BASED METHOD IN PET/MR IMAGING VERSUS PSEUDO-CT METHOD IN RADIOTHERAPY DOSE PLANNING. Iranian Journal of Medical Physics. 2024.
  • 13. Edmund JM, Nyholm T. A review of substitute CT generation for MRI-only radiation therapy. Radiat Oncol. 2017;12(1). https://doi.org/10.1186/s13014-016-0747-y
  • 14. Vera-Olmos J, Torrado-Carvajal A, Prieto-de-la-Lastra C, et al. How to Pseudo-CT: A Comparative Review of Deep Convolutional Neural Network Architectures for CT Synthesis. Applied Sciences. 2022;12(22):11600. https://doi.org/10.3390/app122211600
  • 15. Largent A, Barateau A, Nunes JC, et al. Comparison of Deep Learning-Based and Patch-Based Methods for Pseudo-CT Generation in MRI-Based Prostate Dose Planning. International Journal of Radiation Oncology*Biology*Physics. 2019;105(5):1137-1150. https://doi.org/10.1016/j.ijrobp.2019.08.049
  • 16. Bahrami A, Karimian A, Arabi H. Comparison of different deep learning architectures for synthetic CT generation from MR images. Physica Medica. 2021;90:99-107. https://doi.org/10.1016/j.ejmp.2021.09.006
  • 17. Boulanger M, Nunes JC, Chourak H, et al. Deep learning methods to generate synthetic CT from MRI in radiotherapy: A literaturę review. Physica Medica. 2021;89:265-281. https://doi.org/10.1016/j.ejmp.2021.07.027
  • 18. Mahmood T, Rehman A, Saba T, Nadeem L, Bahaj SAO. Recent Advancements and Future Prospects in Active Deep Learning for Medical Image Segmentation and Classification. IEEE Access. 2023;11:113623-113652. https://doi.org/10.1109/ACCESS.2023.3313977
  • 19. Boldrini L, Bibault JE, Masciocchi C, Shen Y, Bittner MI. Deep Learning: A Review for the Radiation Oncologist. Front Oncol. 2019;9. https://doi.org/10.3389/fonc.2019.00977
  • 20. Cao Z, Gao X, Chang Y, Liu G, Pei Y. Improving synthetic CT accuracy by combining the benefits of multiple normalized preprocesses. J Applied Clin Med Phys. 2023;24(8). https://doi.org/10.1002/acm2.14004
  • 21. Harrison R, Jones B, Gardner P, Lawton R. Quality assessment with diverse studies (QuADS): an appraisal tool for methodological and reporting quality in systematic reviews of mixed- or multi-method studies. BMC Health Serv Res. 2021;21(1). https://doi.org/10.1186/s12913-021-06122-y
  • 22. Savin GD, Fleșeriu C, Batrancea L. Eye tracking and tourism research: A systematic literature review. Journal of Vacation Marketing. 2021;28(3):285-302. https://doi.org/10.1177/13567667211053387
  • 23. Nightingale A. A guide to systematic literature reviews. Surgery (Oxford). 2009;27(9):381-384. https://doi.org/10.1016/j.mpsur.2009.07.005
  • 24. Moher D, Shamseer L, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1). https://doi.org/10.1186/2046-4053-4-1
  • 25. Anudjo MNK, Vitale C, Elshami W, et al. Considerations for environmental sustainability in clinical radiology and radiotherapy practice: A systematic literature review and recommendations for a greener practice. Radiography. 2023;29(6):1077-1092. https://doi.org/10.1016/j.radi.2023.09.006
  • 26. Sirriyeh R, Lawton R, Gardner P, Armitage G. Reviewing studies with diverse designs: the development and evaluation of a new tool. Evaluation Clinical Practice. 2011;18(4):746-752. https://doi.org/10.1111/j.1365-2753.2011.01662.x
  • 27. Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44(4):1408-1419. https://doi.org/10.1002/mp.12155
  • 28. Gupta D, Kim M, Vineberg KA, Balter JM. Generation of Synthetic CT Images From MRI for Treatment Planning and Patient Positioning Using a 3-Channel U-Net Trained on Sagittal Images. Front Oncol. 2019;9. https://doi.org/10.3389/fonc.2019.00964
  • 29. Neppl S, Landry G, Kurz C, et al. Evaluation of proton and photon dose distributions recalculated on 2D and 3D Unet-generated pseudoCTs from T1-weighted MR head scans. Acta Oncologica. 2019;58(10):1429-1434. https://doi.org/10.1080/0284186X.2019.1630754
  • 30. Nie D, Trullo R, Lian J, et al. Medical Image Synthesis with Context-Aware Generative Adversarial Networks. Lecture Notes in Computer Science. Published online 2017:417-425. https://doi.org/10.1007/978-3-319-66179-7_48
  • 31. Emami H, Dong M, Nejad‐Davarani SP, Glide‐Hurst CK. Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Medical Physics. 2018;45(8):3627-3636. https://doi.org/10.1002/mp.13047
  • 32. Kazemifar S, McGuire S, Timmerman R, et al. MRI-only brain radiotherapy: Assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach. Radiotherapy and Oncology. 2019;136:56-63. https://doi.org/10.1016/j.radonc.2019.03.026
  • 33. Wolterink JM, Dinkla AM, Savenije MHF, Seevinck PR, van den Berg CAT, Išgum I. Deep MR to CT Synthesis Using Unpaired Data. Lecture Notes in Computer Science. Published online 2017:14-23. https://doi.org/10.1007/978-3-319-68127-6_2
  • 34. Yang H, Sun J, Carass A, et al. Unpaired Brain MR-to-CT Synthesis Using a Structure-Constrained CycleGAN. Lecture Notes in Computer Science. Published online 2018:174-182. https://doi.org/10.1007/978-3-030-00889-5_20
  • 35. Koike Y, Akino Y, Sumida I, et al. Feasibility of synthetic computed tomography generated with an adversarial network for multi-sequence magnetic resonance-based brain radiotherapy. Journal of Radiation Research. 2019;61(1):92-103. https://doi.org/10.1093/jrr/rrz063
  • 36. Dinkla AM, Florkow MC, Maspero M, et al. Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch‐based three‐dimensional convolutional neural network. Medical Physics. 2019;46(9):4095-4104. https://doi.org/10.1002/mp.13663
  • 37. Xiang L, Wang Q, Nie D, et al. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image. Medical Image Analysis. 2018;47:31-44. https://doi.org/10.1016/j.media.2018.03.011
  • 38. Spadea MF, Pileggi G, Zaffino P, et al. Deep Convolution Neural Network (DCNN) Multiplane Approach to Synthetic CT Generation From MR images—Application in Brain Proton Therapy. International Journal of Radiation Oncology*Biology*Physics. 2019;105(3):495-503. https://doi.org/10.1016/j.ijrobp.2019.06.2535
  • 39. Alvarez Andres E, Fidon L, Vakalopoulou M, et al. Dosimetry-Driven Quality Measure of Brain Pseudo Computed Tomography Generated From Deep Learning for MRI-Only Radiation Therapy Treatment Planning. International Journal of Radiation Oncology*Biology*Physics. 2020;108(3):813-823. https://doi.org/10.1016/j.ijrobp.2020.05.006
  • 40. Li Y, Li W, Xiong J, Xia J, Xie Y. Comparison of Supervised and Unsupervised Deep Learning Methods for Medical Image Synthesis between Computed Tomography and Magnetic Resonance Images. Zhou Z, ed. BioMed Research International. 2020;2020(1). https://doi.org/10.1155/2020/5193707
  • 41. Massa HA, Johnson JM, McMillan AB. Comparison of deep learning synthesis of synthetic CTs using clinical MRI inputs. Phys Med. Biol. 2020;65(23):23NT03. https://doi.org/10.1088/1361-6560/abc5cb
  • 42. Autret D, Guillerminet C, Roussel A, Cossec-Kerloc’h E, Dufreneix S. Comparison of four synthetic CT generators for brain and prostate MR-only workflow in radiotherapy. Radiat Oncol. 2023;18(1). https://doi.org/10.1186/s13014-023-02336-y
  • 43. Xue X, Ding Y, Shi J, et al. Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning Methods for Dose Calculation of Nasopharyngeal Carcinoma Radiotherapy. Technol Cancer Res Treat. 2021;20. https://doi.org/10.1177/15330338211062415
  • 44. Zimmermann L, Knäusl B, Stock M, Lütgendorf-Caucig C, Georg D, Kuess P. An MRI sequence independent convolutional neural network for synthetic head CT generation in proton therapy. Zeitschrift für Medizinische Physik. 2022;32(2):218-227. https://doi.org/10.1016/j.zemedi.2021.10.003
  • 45. Wang Y, Liu C, Zhang X, Deng W. Synthetic CT Generation Based on T2 Weighted MRI of Nasopharyngeal Carcinoma (NPC) Using a Deep Convolutional Neural Network (DCNN). Front Oncol. 2019;9. https://doi.org/10.3389/fonc.2019.01333
  • 46. Qi M, Li Y, Wu A, et al. Multi‐sequence MR image‐based synthetic CT generation using a generative adversarial network for head and neck MRI‐only radiotherapy. Medical Physics. 2020;47(4):1880-1894. https://doi.org/10.1002/mp.14075
  • 47. Aouadi S, Yoganathan S, Torfeh T, et al. Generation of synthetic CT from CBCT using deep learning approaches for head and neck cancer patients. Biomed Phys Eng Express. 2023;9(5):055020. https://doi.org/10.1088/2057-1976/acea27
  • 48. Chen L, Liang X, Shen C, Jiang S, Wang J. Synthetic CT generation from CBCT images via deep learning. Medical Physics. 2020;47(3):1115-1125. https://doi.org/10.1002/mp.13978
  • 49. Chen L, Liang X, Shen C, Nguyen D, Jiang S, Wang J. Synthetic CT generation from CBCT images via unsupervised deep learning. Phys Med Biol. 2021;66(11):115019. https://doi.org/10.1088/1361-6560/ac01b6
  • 50. de Koster RJC, Thummerer A, Scandurra D, Langendijk JA, Both S. Technical note: Evaluation of deep learning based synthetic CTs clinical readiness for dose and NTCP driven head and neck adaptive proton therapy. Medical Physics. 2023;50(12):8023-8033. https://doi.org/10.1002/mp.16782
  • 51. Jeon W, An HJ, Kim J in, et al. Preliminary Application of Synthetic Computed Tomography Image Generation from Magnetic Resonance Image Using Deep-Learning in Breast Cancer Patients. J Radiat Prot Res. 2019;44(4):149-155. https://doi.org/10.14407/jrpr.2019.44.4.149
  • 52. Olberg S, Zhang H, Kennedy WR, et al. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR‐only breast radiotherapy. Medical Physics. 2019;46(9):4135-4147. https://doi.org/10.1002/mp.13716
  • 53. Florkow MC, Zijlstra F, Willemsen K, et al. Deep learning–based MR‐to‐CT synthesis: The influence of varying gradient echo–based MR images as input channels. Magnetic Resonance in Med. 2019;83(4):1429-1441. https://doi.org/10.1002/mrm.28008
  • 54. Liu L, Johansson A, Cao Y, Dow J, Lawrence TS, Balter JM. Abdominal synthetic CT generation from MR Dixon images using a U-net trained with ‘semi-synthetic’ CT data. Phys Med Biol. 2020;65(12):125001. https://doi.org/10.1088/1361-6560/ab8cd2
  • 55. Qian P, Xu K, Wang T, et al. Estimating CT from MR Abdominal Images Using Novel Generative Adversarial Networks. J Grid Computing. 2020;18(2):211-226. https://doi.org/10.1007/s10723-020-09513-3
  • 56. Parrella G, Vai A, Nakas A, et al. Synthetic CT in Carbon Ion Radiotherapy of the Abdominal Site. Bioengineering. 2023;10(2):250. https://doi.org/10.3390/bioengineering10020250
  • 57. Szmul A, Taylor S, Lim P, et al. Deep learning based synthetic CT from cone beam CT generation for abdominal paediatric radiotherapy. Phys Med Biol. 2023;68(10):105006. https://doi.org/10.1088/1361-6560/acc921
  • 58. Arabi H, Dowling JA, Burgos N, et al. Comparative study of algorithms for synthetic CT generation from MRI: Consequences for MRI‐guided radiation planning in the pelvic region. Medical Physics. 2018;45(11):5218-5233. https://doi.org/10.1002/mp.13187
  • 59. Chen S, Qin A, Zhou D, Yan D. Technical Note: U‐net‐generated synthetic CT images for magnetic resonance imaging‐only prostatę intensity‐modulated radiation therapy treatment planning. Medical Physics. 2018;45(12):5659-5665. https://doi.org/10.1002/mp.13247
  • 60. Florkow MC, Zijlstra F, Kerkmeijer LGW, et al. The impact of MRI-CT registration errors on deep learning-based synthetic CT generation. Angelini ED, Landman BA, eds. Medical Imaging 2019: Image Processing. Published online March 15, 2019:116 https://doi.org/10.1117/12.2512747
  • 61. Stadelmann JV, Schulz H, van der Heide UA, Renisch S. Pseudo-CT image generation from mDixon MRI images using fully convolutional neural networks. Gimi B, Krol A, eds. Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging. Published online March 15, 2019:33. https://doi.org/10.1117/12.2512741
  • 62. Bahrami A, Karimian A, Fatemizadeh E, Arabi H, Zaidi H. A new deep convolutional neural network design with efficient learning capability: Application to CT image synthesis from MRI. Medical Physics. 2020;47(10):5158-5171. https://doi.org/10.1002/mp.14418
  • 63. Fetty L, Löfstedt T, Heilemann G, et al. Investigating conditional GAN performance with different generator architectures, an ensemble model, and different MR scanners for MR-sCT conversion. Phys Med Biol. 2020;65(10):105004. https://doi.org/10.1088/1361-6560/ab857b
  • 64. Lena B, Florkow MC, Ferrer CJ, et al. Synthetic CT for the planning of MR-HIFU treatment of bone metastases in pelvic and femoral bones: a feasibility study. Eur Radiol. 2022;32(7):4537-4546. https://doi.org/10.1007/s00330-022-08568-y
  • 65. Wyatt JJ, Kaushik S, Cozzini C, et al. Comprehensive dose evaluation of a Deep Learning based synthetic Computed Tomography algorithm for pelvic Magnetic Resonance-only radiotherapy. Radiotherapy and Oncology. 2023;184:109692. https://doi.org/10.1016/j.radonc.2023.109692
  • 66. Bambach S, Ho ML. Deep Learning for Synthetic CT from Bone MRI in the Head and Neck. AJNR Am J Neuroradiol. 2022;43(8):1172-1179. https://doi.org/10.3174/ajnr.A7588
  • 67. Lei Y, Harms J, Wang T, et al. MRI‐only based synthetic CT generation using dense cycle consistent generative adversarial networks. Medical Physics. 2019;46(8):3565-3581. https://doi.org/10.1002/mp.13617
  • 68. Shafai-Erfani G, Lei Y, Liu Y, et al. MRI-Based Proton Treatment Planning for Base of Skull Tumors. International Journal of Particle Therapy. 2019;6(2):12-25. https://doi.org/10.14338/IJPT-19-00062.1
  • 69. Kazemifar S, Barragán Montero AM, Souris K, et al. Dosimetric evaluation of synthetic CT generated with GANs for MRI‐only proton therapy treatment planning of brain tumors. J Applied Clin Med Phys. 2020;21(5):76-86. https://doi.org/10.1002/acm2.12856
  • 70. Maspero M, Bentvelzen LG, Savenije MHF, et al. Deep learning-based synthetic CT generation for paediatric brain MR-only photon and proton radiotherapy. Radiotherapy and Oncology. 2020;153:197-204. https://doi.org/10.1016/j.radonc.2020.09.029
  • 71. Tang B, Wu F, Fu Y, et al. Dosimetric evaluation of synthetic CT image generated using a neural network for MR‐only brain radiotherapy. J Applied Clin Med Phys. 2021;22(3):55-62. https://doi.org/10.1002/acm2.13176
  • 72. Wang CC, Wu PH, Lin G, et al. Magnetic Resonance-Based Synthetic Computed Tomography Using Generative Adversarial Networks for Intracranial Tumor Radiotherapy Treatment Planning. JPM. 2022;12(3):361. https://doi.org/10.3390/jpm12030361
  • 73. Klages P, Benslimane I, Riyahi S, et al. Comparison of Patch-Based Conditional Generative Adversarial Neural Net Models with Emphasis on Model Robustness for Use in Head and Neck Cases for MR-Only planning. Published online 2019. https://doi.org/10.48550/arXiv.1902.00536
  • 74. Peng Y, Chen S, Qin A, et al. Magnetic resonance-based synthetic computed tomography images generated using generative adversarial networks for nasopharyngeal carcinoma radiotherapy treatment planning. Radiotherapy and Oncology. 2020;150:217-224. https://doi.org/10.1016/j.radonc.2020.06.049
  • 75. Tie X, Lam S, Zhang Y, Lee K, Au K, Cai J. Pseudo‐CT generation from multi‐parametric MRI using a novel multi‐channel multi‐path conditional generative adversarial network for nasopharyngeal carcinoma patients. Medical Physics. 2020;47(4):1750-1762. https://doi.org/10.1002/mp.14062
  • 76. Xu K, Cao J, Xia K, et al. Multichannel Residual Conditional GAN-Leveraged Abdominal Pseudo-CT Generation via Dixon MR Images. IEEE Access. 2019;7:163823-163830. https://doi.org/10.1109/ACCESS.2019.2951924
  • 77. Cusumano D, Lenkowicz J, Votta C, et al. A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases. Radiotherapy and Oncology. 2020;153:205-212. https://doi.org/10.1016/j.radonc.2020.10.018
  • 78. Fu J, Singhrao K, Cao M, et al. Generation of abdominal synthetic CTs from 0.35T MR images using generative adversarial networks for MR-only liver radiotherapy. Biomed Phys Eng Express. 2020;6(1):015033. https://doi.org/10.1088/2057-1976/ab6e1f
  • 79. Maspero M, Savenije MHF, Dinkla AM, et al. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Phys Med Biol. 2018;63(18):185001. https://doi.org/10.1088/1361-6560/aada6d
  • 80. Bird D, Nix MG, McCallum H, et al. Multicentre, deep learning, synthetic-CT generation for ano-rectal MR-only radiotherapy treatment planning. Radiotherapy and Oncology. 2021;156:23-28. https://doi.org/10.1016/j.radonc.2020.11.027
  • 81. Brou Boni KND, Klein J, Vanquin L, et al. MR to CT synthesis with multicenter data in the pelvic area using a conditional generative adversarial network. Phys Med Biol. 2020;65(7):075002. https://doi.org/10.1088/1361-6560/ab7633
  • 82. Cao G, Li Y, Wu S, et al. Clinical feasibility of MRI-based synthetic CT imaging in the diagnosis of lumbar disc herniation: a comparative study. Acta Radiol. 2023;65(1):41-48. https://doi.org/10.1177/02841851231169173
  • 83. Irmak S, Zimmermann L, Georg D, Kuess P, Lechner W. Cone beam CT based validation of neural network generated synthetic CTs for radiotherapy in the head region. Medical Physics. 2021;48(8):4560-4571. https://doi.org/10.1002/mp.14987
  • 84. Li W, Kazemifar S, Bai T, et al. Synthesizing CT images from MR images with deep learning: model generalization for different datasets through transfer learning. Biomed Phys Eng Express. 2021;7(2):025020. https://doi.org/10.1088/2057-1976/abe3a7
  • 85. Wang T, Lei Y, Fu Y, et al. A review on medical imaging synthesis using deep learning and its clinical applications. J Applied Clin Med Phys. 2020;22(1):11-36. https://doi.org/10.1002/acm2.13121
  • 86. McKenzie EM, Santhanam A, Ruan D, O’Connor D, Cao M, Sheng K. Multimodality image registration in the head‐and‐neck using a deep learning‐derived synthetic CT as a bridge. Medical Physics. 2020;47(3):1094-1104. https://doi.org/10.1002/mp.13976
  • 87. Liu Y, Lei Y, Wang Y, et al. MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method. Phys Med Biol. 2019;64(14):145015. https://doi.org/10.1088/1361-6560/ab25bc
  • 88. Dal Bello R, Lapaeva M, La Greca Saint-Esteven A, et al. Patient-specific quality assurance strategies for synthetic computed tomography in magnetic resonance-only radiotherapy of the abdomen. Physics and Imaging in Radiation Oncology. 2023;27:100464. https://doi.org/10.1016/j.phro.2023.100464
  • 89. Liu Y, Lei Y, Wang T, et al. MRI-based treatment planning for liver stereotactic body radiotherapy: validation of a deep learning-based synthetic CT generation method. The British Journal of Radiology. 2019;92(1100). https://doi.org/10.1259/bjr.20190067
  • 90. Prunaretty J, Güngör G, Gevaert T, et al. A multi-centric evaluation of self-learning GAN based pseudo-CT generation software for low field pelvic magnetic resonance imaging. Front Oncol. 2023;13. https://doi.org/10.3389/fonc.2023.1245054
  • 91. Tian L, Lühr A. Proton range uncertainty caused by synthetic computed tomography generated with deep learning from pelvic magnetic resonance imaging. Acta Oncologica. 2023;62(11):1461-1469. https://doi.org/10.1080/0284186X.2023.2256967
  • 92. Hemsley M, Chugh B, Ruschin M, et al. Deep Generative Model for Synthetic-CT Generation with Uncertainty Predictions. Lecture Notes in Computer Science. Published online 2020:834-844. https://doi.org/10.1007/978-3-030-59710-8_81
  • 93. Bourbonne V, Jaouen V, Hognon C, et al. Dosimetric Validation of a GAN-Based Pseudo-CT Generation for MRI-Only Stereotactic Brain Radiotherapy. Cancers. 2021;13(5):1082. https://doi.org/10.3390/cancers13051082
  • 94. Liu F, Yadav P, Baschnagel AM, McMillan AB. MR‐based treatment planning in radiation therapy using a deep learning approach. J Applied Clin Med Phys. 2019;20(3):105-114. https://doi.org/10.1002/acm2.12554
  • 95. Lerner M, Medin J, Jamtheim Gustafsson C, Alkner S, Siversson C, Olsson LE. Clinical validation of a commercially available deep learning software for synthetic CT generation for brain. Radiat Oncol. 2021;16(1). https://doi.org/10.1186/s13014-021-01794-6
  • 96. Yang X, Feng B, Yang H, et al. CNN-based multi-modal radiomics analysis of pseudo-CT utilization in MRI-only brain stereotactic radiotherapy: a feasibility study. BMC Cancer. 2024;24(1). https://doi.org/10.1186/s12885-024-11844-3
  • 97. Thummerer A, de Jong BA, Zaffino P, et al. Comparison of the suitability of CBCT- and MR-based synthetic CTs for daily adaptive proton therapy in head and neck patients. Phys Med Biol. 2020;65(23):235036. https://doi.org/10.1088/1361-6560/abb1d6
  • 98. Palmér E, Karlsson A, Nordström F, et al. Synthetic computed tomography data allows for accurate absorbed dose calculations in a magnetic resonance imaging only workflow for head and neck radiotherapy. Physics and Imaging in Radiation Oncology. 2021;17:36-42. https://doi.org/10.1016/j.phro.2020.12.007
  • 99. Fu J, Yang Y, Singhrao K, et al. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Medical Physics. 2019;46(9):3788-3798. https://doi.org/10.1002/mp.13672
  • 100. Liu Y, Lei Y, Wang T, et al. CBCT‐based synthetic CT generation using deep‐attention cycleGAN for pancreatic adaptive radiotherapy. Medical Physics. 2020;47(6):2472-2483. https://doi.org/10.1002/mp.14121
  • 101. Liu X, Emami H, Nejad‐Davarani SP, et al. Performance of deep learning synthetic CTs for MR‐only brain radiation therapy. J Applied Clin Med Phys. 2021;22(1):308-317. https://doi.org/10.1002/acm2.13139
  • 102. Largent A, Marage L, Gicquiau I, et al. Head-and-Neck MRI-only radiotherapy treatment planning: From acquisition in treatment position to pseudo-CT generation. Cancer/Radiothérapie. 2020;24(4):288-297. https://doi.org/10.1016/j.canrad.2020.01.008
  • 103. Liu J, Yan H, Cheng H, et al. CBCT-based synthetic CT generation using generative adversarial networks with disentangled representation. Quant Imaging Med Surg. 2021;11(12):4820-4834. https://doi.org/10.21037/qims-20-1056
  • 104. Nie D, Cao X, Gao Y, Wang L, Shen D. Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks. In: Carneiro, G., et al. Deep Learning and Data Labeling for Medical Applications. DLMIA LABELS 2016 2016. Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-319-46976-8_18
  • 105. Xiang L, Wang Q, Nie D, et al. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image. Medical Image Analysis. 2018;47:31-44. https://doi.org/10.1016/j.media.2018.03.011
  • 106. Pan S, Abouei E, Wynne J, et al. Synthetic CT generation from MRI using 3D transformer‐based denoising diffusion model. Medical Physics. 2023;51(4):2538-2548. https://doi.org/10.1002/mp.16847
  • 107. Thummerer A, van der Bijl E, Galapon A Jr, et al. SynthRAD2023 Grand Challenge dataset: Generating synthetic CT for radiotherapy. Medical Physics. 2023;50(7):4664-4674. https://doi.org/10.1002/mp.16529
  • 108. Wang J, Zhu H, Wang SH, Zhang YD. A Review of Deep Learning on Medical Image Analysis. Mobile Netw Appl. 2020;26(1):351-380. https://doi.org/10.1007/s11036-020-01672-7
  • 109. Dinkla AM, Wolterink JM, Maspero M, et al. MR-Only Brain Radiation Therapy: Dosimetric Evaluation of Synthetic CTs Generated by a Dilated Convolutional Neural Network. International Journal of Radiation Oncology*Biology*Physics. 2018;102(4):801-812. https://doi.org/10.1016/j.ijrobp.2018.05.058
  • 110. Li W, Li Y, Qin W, et al. Magnetic resonance image (MRI) synthesis from brain computed tomography (CT) images based on deep learning methods for magnetic resonance (MR)-guided radiotherapy. Quant Imaging Med Surg. 2020;10(6):1223-1236. https://doi.org/10.21037/qims-19-885
  • 111. Wang C, Uh J, Merchant TE, Hua C ho, Acharya S. Facilitating MR-Guided Adaptive Proton Therapy in Children Using Deep Learning-Based Synthetic CT. International Journal of Particle Therapy. 2022;8(3):11-20. https://doi.org/10.14338/IJPT-20-00099.1
  • 112. Liu Y, Lei Y, Wang Y, et al. Evaluation of a deep learning-based pelvic synthetic CT generation technique for MRI-based prostatę proton treatment planning. Phys Med Biol. 2019;64(20):205022. https://doi.org/10.1088/1361-6560/ab41af
  • 113. Bäumer C, Frakulli R, Kohl J, et al. Adaptive Proton Therapy of Pediatric Head and Neck Cases Using MRI-Based Synthetic CTs: Initial Experience of the Prospective KiAPT Study. Cancers. 2022;14(11):2616. https://doi.org/10.3390/cancers14112616
  • 114. Florkow MC, Guerreiro F, Zijlstra F, et al. Deep learning-enabled MRI-only photon and proton therapy treatment planning for paediatric abdominal tumours. Radiotherapy and Oncology. 2020;153:220-227. https://doi.org/10.1016/j.radonc.2020.09.056
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6280f6dd-8667-456a-b2f0-2926a27f4da4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.