PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of cultivation factors on embryogenesis in isolated microspore culture of carrot (Daucus carota L.)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using doubled haploid technologies inbreeding can significantly reduce the time to obtain homozygous parental lines required for the production of F1-hybrid of vegetable crops. This study aims to investigate the influence of factors on the efficiency of carrot embryogenesis in isolated microspore culture to optimise the elements of protocol for producing doubled haploids. Microspores were isolated from inflorescences of 21 genotypes and incubated in NLN13 medium supplemented with 0.1 mg·dm-3 2,4-dichlorophenoxyacetic acids, 0.1 mg·dm-3 1-naphthyl acetic acids, 130 g·dm-3 sucrose, and 400 mg·dm-3 casein hydrolysate and its modifications. Embryoids and their groups were formed after 2–6 months, in some cases after 12 months of cultivation. Depending on the variant, the embryogenesis efficiency averaged from 0 to 4.9 embryoids or groups of embryoids per Petri dish (10 cm3). Embryoids within the group were formed from different microspores. No significant effects of inflorescence position on the plant (branching order), sucrose, and casein hydrolysate concentration in the medium were observed. Significant advantages (p ≥ 0.05) for some genotypes were shown: 1) microspore suspension density 4·104 cells·cm-3 (5.0 embryoids per Petri dish were formed at a microspore suspension density of 4·104 cells·cm-3, 0.0 embryoids per Petri dish at a density of 8·104 cells·cm-3); 2) cultivating microspores of tetrad and early mononuclear stage (4.9 ±3.1 embryoids per Petri dish were obtained by culturing tetrads and early mononuclear microspores, while 0.6 ±0.7 embryoids per Petri dish were obtained by culturing of later developmental stages); 3) high-temperature treatment duration of five days (4.9 ±2.1 embryoids per Petri dish were obtained after five days of high-temperature treatment, 2.7 ±2.6 embryoids per Petri dish formed after two days of high-temperature treatment; 9.8 ±4.7, 10.1 ±6.1, 0.0 ±0.0 embryoids per Petri dish formed after two, five and eight days of high-temperature treatment respectively); 4) adding colchicine 0.5 mg·dm-3 to the nutrient medium for two days of high-temperature treatment, followed by medium replacement (3.3 ±2.6 embryoids per Petri dish were obtained by using a nutrient medium with colchicine, while 1.7 ±1.5 embryoids per Petri dish were obtained by culturing in the reference variant).
Wydawca
Rocznik
Tom
Strony
125--128
Opis fizyczny
Bibliogr. 14 poz., tab.
Twórcy
  • Russian State Agrarian University, Department of Botany, Plant Breeding and Seed Technology, Timiryazevskaya street, 49127550, Moscow, Russian Federation
  • Russian State Agrarian University, Department of Botany, Plant Breeding and Seed Technology, Timiryazevskaya street, 49127550, Moscow, Russian Federation
  • Russian State Agrarian University, Department of Botany, Plant Breeding and Seed Technology, Timiryazevskaya street, 49127550, Moscow, Russian Federation
  • Russian State Agrarian University, Breeding Station after N.N. Timofeev, Moscow, Russian Federation
  • Russian State Agrarian University, Department of Botany, Plant Breeding and Seed Technology, Timiryazevskaya street, 49127550, Moscow, Russian Federation
  • Russian State Agrarian University, Department of Botany, Plant Breeding and Seed Technology, Timiryazevskaya street, 49127550, Moscow, Russian Federation
Bibliografia
  • BACH I.C., OLESEN A., SIMON P.W. 2002. PCR-based markers to differentiate the mitochondrial genomes of petaloid and male fertile carrot (Daucus carota L.). Euphytica. Vol. 127(3) p. 353–365. DOI 10.1023/A:1020314802236.
  • BAIKHAMUROVA M.O., SAINOVA G.A., AKBASOVA A.D., ANARBEKOVA G.D., OZLER M.A. 2021. The influence of the mixture of vermicompost and sulphurperlite-containing waste on the yield and the quality of crops. Journal of Water and Land Development. No. 49 p. 213–218. DOI 10.24425/jwld.2021.137114.
  • CHISTOVA A.V. 2018. Primeneniye metoda molekulyarno-geneticheskogo analiza dlya vyyavleniya rasteniy morkovi s tsitoplazmoy tipa „petaloid” [Identification of carrot plants with “petaloid” cytoplasm by molecular markers]. Kartofel’ i ovoshchi. No. 9 p. 33–35. DOI 10.25630/PAV.2018.9.18333.
  • GÓRECKA K., KOWALSKA U., KRZYŻANOWSKA D., KISZCZAK W. 2010. Obtaining carrot (Daucus carota L.) plants in isolated microspore cultures. Journal of Applied Genetics. Vol. 51(2) p. 141–147. DOI 10.1007/BF03195722.
  • KASHA K.J., HU T.C., ORO R., SIMION E., SHIM Y.S. 2001. Nuclear fusion leads to chromosome doubling during mannitol pretreatment of barley (Hordeum vulgare L.) microspores. Journal of Experimental Botany. Vol. 52(359) p. 1227–1238. DOI 10.1093/jexbot/52.359.1227.
  • KIROV I., DIVASHUK M., VAN LAERE K., SOLOVIEV A., KHRUSTALEVA L. 2014. An easy “SteamDrop” method for high quality plant chromosome preparation. Molecular Cytogenetics. Vol. 7(1), 21. DOI 10.1186/1755-8166-7-21.
  • KISZCZAK W., KOWALSKA U., BURIAN M., GÓRECKA K. 2018. Induced androgenesis as a biotechnology method for obtaining DH plants in Daucus carota L. The Journal of Horticultural Science and Biotechnology. Vol. 93(6) p. 625–633. DOI 10.1080/14620316.2018.1431058.
  • KISZCZAK W., KOWALSKA U., KAPUŚCIŃSKA A., BURIAN M., GÓRECKA K. 2015. Effect of low temperature on in vitro androgenesis of carrot (Daucus carota L.). In Vitro Cellular & Developmental Biology – Plant. Vol. 51(2) p. 135–142. DOI 10.1007/s11627-015-9665-1.
  • LI J.R., ZHUANG F.Y., OU C.G., HU H., ZHAO Z.W., MAO J. H. 2013. Microspore embryogenesis and production of haploid and doubled haploid plants in carrot (Daucus carota L.). Plant Cell, Tissue and Organ Culture (PCTOC). Vol. 112(3) p. 275–287.
  • LIGHTER R. 1989. Efficient yield of embryoids by culture of isolated microspores of different Brassicaceae species. Plant Breeding. Vol. 103(2) p. 119–123. DOI 10.1111/j.1439-0523.1989.tb00359.x.
  • MURRAY M.G., THOMPSON W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research. Vol. 8(19) p. 4321–4326. DOI 10.1093/nar/8.19.4321.
  • SANGWAN R.S., SANGWAN-NORREEL B.S. 1987. Biochemical cytology of pollen embryogenesis. International Review of Cytology. Vol. 107 p. 221–272. DOI 10.1016/S0074-7696(08)61077-3.
  • SEGUÍ-SIMARRO J.M., NUEZ F. 2008. How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiologia Plantarum. Vol. 134(1) p. 1–12. DOI 10.1111/j.1399-3054.2008.01113.x.
  • SHIM Y.S., KASHA K.J., SIMION E., LETARTE J. 2006. The relationship between induction of embryogenesis and chromosome doubling in microspore cultures. Protoplasma. Vol. 228(1–3) p. 79–86. DOI 10.1007/s00709-006-0177-z.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-627e742f-205e-4314-a079-c877eb801683
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.