PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Zastosowanie oraz perspektywy rozwoju technologii granulacji tlenowej w oczyszczaniu ścieków

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Application and perspectives of development of aerobic granular sludge technology in wastewater treatment
Języki publikacji
PL
Abstrakty
PL
W ostatnich latach są prowadzone badania nad granulacją biomasy w warunkach tlenowych zarówno w skali laboratoryjnej, jak i technicznej. Granule tlenowe to zwarte, sferyczne zbiorowiska mikroorganizmów, powstające w wyniku samorzutnej immobilizacji. Biomasę granulowaną wyróżniają bardzo dobre właściwości sedymentacyjne, długi wiek osadu oraz możliwość symultanicznego usuwania biogenów w strukturze granuli, co pozwala efektywnie oczyszczać ścieki w pojedynczym reaktorze. W pracy przedstawiono informacje o formowaniu, morfologii i strukturze gatunkowej granul, jak również przytoczono przykłady zastosowania tlenowej biomasy granulowanej do oczyszczania ścieków, w tym zawierających wysokie stężenia związków azotu czy związki toksyczne. Technologia granul tlenowych przedstawiona została jako atrakcyjna ekonomicznie i środowiskowo alternatywa dla systemów opartych o klasyczny osad czynny lub błonę biologiczną. W pracy zaprezentowano dane o instalacjach z granulami tlenowymi w skali technicznej na świecie oraz przedstawiono możliwości zastosowania technologii w warunkach krajowych.
EN
Recently an extensive studies have been carried out on aerobic granular sludge technology in both laboratory and technical scale. Aerobic granules are compact, spherical microbial consortia created by a spontaneous immobilization. Amongst their advantages are a very good settling ability, long biomass age and simultaneous pollutant removal in the granule structure that enables full biological treatment of wastewater in a single reactor. This review outlines up-to-date information on granule formation, morphology, microbial structure as well as on the applications of aerobic granular sludge technology for wastewater treatment including the treatment of high-nitrogen wastewater with a low COD/N ratio and wastewater of high toxicity. Aerobic granular sludge technology is presented as both environmentally and financially attractive alternative to wastewater treatment systems based on activated sludge or biofilm. This paper also reports on already existing full-scale installations in world and seeks to explore the potential of aerobic granular sludge within the Polish conditions.
Rocznik
Tom
Strony
156--166
Opis fizyczny
Bibliogr. 54 poz., fot.
Twórcy
  • Katedra Biotechnologii w Ochronie Środowiska, Wydział Nauk o Środowisku, Uniwersytet Warmińsko-Mazurski w Olsztynie
Bibliografia
  • 1. Adav S.S., Lee D.J., Ren N.Q., 2007. Biodegradation of pyridine using aerobic granules in the presence of phenol. Water Res. 41, 2903–2910.
  • 2. Bartoszewski K., 1994. Technologie oczyszczania ścieków i przeróbki osadów stosowanie w warunkach krajowych. Ochrona Środowiska 3-4(54-55), 43–48.
  • 3. Carucci A., Milia S., de Gioannis G., Piredda M., 2009. Acetate-fed aerobic granular sludge for the degradation of 4-chlorophenol. J. Hazard. Mater. 166, 483–490.
  • 4. Cydzik-Kwiatkowska A., Wojowska-Baryła I., Selewska K., 2010. Granulation of sludge under different loads of a glycerol fraction from biodiesel production. Eur. J. Lipid Sci. Technol. 112 (5), 609–613.
  • 5. Cydzik-Kwiatkowska A., Wojnowska-Baryła I., 2011. Nitrifying granules cultivation in a sequencing batch reactor at a low organics-to-total nitrogen ratio in wastewater. Folia Microbiol. 56(3), 201–208.
  • 6. Cydzik-Kwiatkowska A., Zielińska M., Bernat K., Wojnowska-Baryła I., Truchan T., 2013. Treatment of high-ammonium anaerobic digester supernatant by aerobic granular sludge and ultrafiltration processes. Chemosphere 90 (8), 2208–2215.
  • 7. de Kreuk M.K., McSwain B.S., Bathe S., Tay J., Schwarzenbeck S.T.L., Wilderer P.A., 2005. Discussion outcomes. Ede. In: Aerobic granular sludge, water and environmental management series. Munich: IWA Publishing, 165–169.
  • 8. de Kreuk M.K., Kishida N., van Loosdrecht M.C.M., 2007. Aerobic granular sludge – state of the art. Water Sci. Technol. 155, 79–81.
  • 9. Dulekgurgen E., Ovez S., Artan N., 2003. Enhanced biological phosphate removal by granular sludge in a sequencing batch reactor. Biotechnol. Lett. 25, 687–693.
  • 10. Figueroa M., Mosquera-Corral A., Campos J.L., Méndez R., 2008. Treatment of saline wastewater in SBR aerobic granular reactors. Water Sci. Technol. 58, 479–485.
  • 11. Forowicz K., 2011. Oczyszczalnie ścieków – zdążyć do 2015 r. Środowisko 21, 19-20.
  • 12. Giesen A., de Bruin L.M.M., Niermans R.P., van der Roest H.F., 2013. Advancements in the application of aerobic granular biomass technology for sustainable treatment of wastewater. Water Practice & Technol. 8(1), 47–54.
  • 13. Gilda C., Paulo C., Adrian O., Maria A.M., 2007. Denitrifying phosphorus removal: Linking the process performance with the microbial community structure. Water Res. 41, 4383–4396.
  • 14. Ho K.L., Chen Y.Y., Lin B., Lee D.J., 2010. Degrading high-strength phenol using aerobic granular sludge. Appl. Microbiol. Biotechnol. 85, 2009–2015.
  • 15. Jiang H.L., Tay J.H., Tay S.T.L., 2002. Aggregation of immobilized activated sludge into aerobically grown microbial granule for the aerobic biodegradation of phenol. Lett. Appl. Microbiol. 35, 439–445.
  • 16. Kim D., Seo D., 2006. Selective enrichment and granulation of ammonia oxidizers in a sequencing batch reactor. Process Biochem. 41(5), 1055–1062.
  • 17. Lee S., Basu S., Tyler C.W., Pitt P.A., 2003. A survey of filamentous organisms at the Deer Island Treatment Plant. Environ Technol. 24, 855–865.
  • 18. Lemaire R., Yuan Z.G., Blackall L.L., Crocetti G.R., 2008. Microbial distribution of Ac-cumulibacter spp. and Competibacter spp. in aerobic granules from a lab scale biological nutrient removal system. Environ. Microbiol. 10, 354–363.
  • 19. Li Y., Liu Y., Liang S., Feng C., 2008a. DO diffusion profile in aerobic granule and its microbiological implications. Enzyme Microb. Technol. 43, 349–354.
  • 20. Li X.F., Li Y.J., Liu H., Hua Z.Z., Du G.C., Chen J., 2008b. Correlation between extracellular polymeric substances and aerobic biogranulation in membrane bioreactor. Separ. Purif. Technol. 59(1), 26–33.
  • 21. Li X.M., Liu Q.Q., Yang Q., Guo L., Zeng G.M., Hu J.M., Zheng W., 2009. Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation. Bioresour. Technol. 100, 64–67.
  • 22. Li J., Ding L.-B., Cai A., Huang G.-X., Horn H., 2014. Aerobic sludge granulation if a full-scale sequencing batch reactor. BioMed Research International, ID 268789, pp. 12.
  • 23. Lin L.H., Jian L.W., Xiang H.W., Yi Q., 2005. The formation and characteristics of aerobic granules in sequencing batch reactor (SBR) by seeding anaerobic granules. Process Biochem. 40, 1–7.
  • 24. Liu Y., Xu H., Yang S.F., Tay J.H., 2003. A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules. J. Biotechnol. 102, 233–239.
  • 25. Liu Y, Lin Y.M., Tay J.H., 2005. The elemental compositions of P-accumulating microbial granules developed in sequencing batch reactors. Process Biochem. 40, 3258–3262.
  • 26. Liu Y., Wang F., Xia S.Q., Zhao J.F., 2008. Study of 4-t-octylphenol degradation and microbial community in granular sludge. J. Environ. Sci. 20, 167–171.
  • 27. Liu Y.-Q., Kong Y., Tay J.-H., Zhu J., 2011. Enhancement of start-up of pilot-scale granular SBR fed with real wastewater. Separ. Purify. Technol. 82, 190–196.
  • 28. Masłoń A., Tomaszek J.A., 2011. Sekwencyjne reaktory porcjowe w oczyszczaniu ścieków. Zeszyty Naukowe Politechniki Rzeszowskiej 58 (4/11), 215–246.
  • 29. Mishima K., Nakamura M., 1991. Self-immobilization of aerobic activated sludge - a pilot study of the process in municipal sewage treatment. Water Sci. Technol. 23, 981–990.
  • 30. Ng P.H., 2002. Storage stability of aerobic granules cultivated in aerobic granular sludge blanket reactor. Praca inżynierska, Nanyang Technological University, Signapur.
  • 31. Ni B.J., Xie W.M., Liu S.G., Yu H.Q., 2009. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Res. 43, 751–761.
  • 32. Q. Y., Liu B., Moy B., Kong Y.H., Tay J.H., 2010. Formation, physical characteristic and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment. Enzyme Microbial. Technol. 46, 520–525.
  • 33. Qin L., Tay J.H., Liu Y., 2004. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochem. 39, 579–584.
  • 34. Rossetti S., Tomei M.C., Nielsen P.H., Tandoi V., 2005. “Microthrix parvicella” a filamentous bacterium causing bulking and foaming in activated sludge systems: A review of current knowledge. FEMS Microbiol. Rev. 29, 49–64.
  • 35. Shi X.Y., Yu H.Q., Sun Y.J., Huang X., 2009. Characteristics of aerobic granules rich in autotrophic ammonium-oxidizing bacteria in a sequencing batch reactor. Chem. Eng. J. 147, 102–109.
  • 36. Song Z.W., Ren N.Q., Zhang K., Tong L.Y., 2009. Influence of temperature on the characteristics of aerobic granulation in sequencing batch airlift reactors. J. Environ. Sci. 21, 273–278.
  • 37. Tay J.H., Liu Q.S., Liu Y., 2001. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. Appl. Microbiol. 91, 168–175.
  • 38. Tay S.T.L., Ivanov V., Yi S., Zhuang W.Q., Tay J.H., 2002. Presence of anaerobic Bacteroides in aerobically grown microbial granules. Microbiol. Ecol. 44, 278–285.
  • 39. Toh S.K., Tay J.H., Moy B.Y.P., Tay S.T.L., 2003. Size-effect on the physical characteristics of the aerobic granule in a SBR. Appl. Microbiol. Biotechnol. 60, 687–695.
  • 40. Tsuneda S., Jung J., Hayashi H., Aikawa H., Hirata A., Sasaki H., 2003. Influence of extracellular polymers on electro kinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory. Colloids Surf. 29, 181–188.
  • 41. Viaeminck S.E., Cloetens L.F.F., Carballa M., Boon N., Verstraete W., 2008. Granular biomass capable of partial nitritation and Anammox. Water Sci. Technol. 58, 1113–1120.
  • 42. Wang Z.W., Liu Y., Tay J.H., 2007a. Biodegradability of extracellular polymeric substances produced by aerobic granules. Appl. Microbiol. Biotechnol. 74, 462–466.
  • 43. Wang S.G., Liu X.W., Zhang H.Y., Gong W.X., Sun X.F., 2007b. Aerobic granulation for 2,4-dichlorophenol biodegradation in a sequencing batch reactor. Chemosphere 69, 769–775.
  • 44. Wang X.H., Zhang H.M., Yang F.L., Wang Y.F., Gao M.M., 2008. Long-term storage and subsequent reactivation of aerobic granules. Bioresour. Technol. 99, 8304–8309.
  • 45. Weber S.D., Ludwig W., Schleifer K.H., Fried J., 2007. Microbial composition and structure of aerobic granular municipal wastewater biofilms. Appl. Environ. Microbiol. 73, 6233–6240.
  • 46. Wei Y., Min J., Li R., Qin F., 2012. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors. Waste Manage. 32, 448–455.
  • 47. Wichern M., Lübken M., Horn H., 2008. Optimizing sequencing batch reactor (SBR) reactor operation for treatment of dairy wastewater with aerobic granular sludge. Water Sci. Technol. 58(6), 1199–206.
  • 48. Williams J.C., De los Reyes F.L., 2006. Microbial community structure of activated sludge during aerobic granulation in an annular gap bioreactor. Water Sci. Technol. 54, 139–146.
  • 49. Xu H., Liu Y., Tay J.H., 2006. Effect of pH on nickel biosorption by aerobic granular sludge. Bioresour. Technol. 97, 359–363.
  • 50. Yao L., Ye Z.F., Tong M.P., Lai P., Ni J.R., 2009. Removal of Cr3+ from aqueous solution by biosorption with aerobic granules. J. Hazard. Mater. 165, 250–255.
  • 51. Zhang L.L., Chen J.M., Fang F., 2008. Biodegradation of methyl t-butyl ether by aerobic granules under a cosubstrate condition. Appl. Microbiol. Biotechnol. 78, 543–550.
  • 52. Zheng Y.M., Yu H.Q., Sheng G.P., 2005. Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor. Process Biochem. 40, 645–650.
  • 53. Zheng Y.M., Yu H.Q., Liu S.J., 2006. Formation and instability of aerobic granules under high organic loading conditions. Chemosphere 63, 1791–1800.
  • 54. Zheng Y.M., Yu H.Q., 2007. Determination of the pore size distribution and porosity of aerobic granules using size-exclusion chromatography. Water Res. 41, 39–46.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-627b819b-05b9-4aa8-bfb4-a0f7d9c009aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.