Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research examines carbon dynamics and vegetation indices in oil palm plantations across Riau Province through an integrated analysis of carbon stocks, normalized difference vegetation index (NDVI), and Net Ecosystem Exchange (NEE). Observations were conducted in six districts (Kampar, Siak, Pelalawan, Rokan Hulu, Indragiri Hulu, and Indragiri Hilir) from August 2022 to May 2024, using a nested sampling design focusing on productive oil palmsaged 8–16 years. Results showed significant variations in carbon stocks among districts, with Rokan Hulu and Indragiri Hilir consistently demonstrating the highest carbon storage capacity (41.43–43.46 tC·ha-1). NDVI analysis revealed increasing values from 2022 to 2024, with Siak District reaching the highest value (0.81) in 2024. Meanwhile, NEE in all districts showed negative values (-1.64 to -1.82 gC/m2/day), indicating that oil palm plantations serve as net carbon sinks. This research provides a comprehensive understanding of carbon dynamics in oil palm plantation systems and their contribution to climate change mitigation, while highlighting the importance of sustainable management practices in optimizing carbon sequestration.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
342--349
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Graduate student Environmental Sciences, Universitas Riau, Indonesia
- Indonesian Palm Oil Smallholders’ Association, Jakarta, Indonesia
autor
- Teaching Staff of Environmental Sciences, Postgraduate Program, Universitas Riau, Indonesia
autor
- Teaching Staff of Environmental Sciences, Postgraduate Program, Universitas Riau, Indonesia
autor
- Teaching Staff of Environmental Sciences, Postgraduate Program, Universitas Riau, Indonesia
Bibliografia
- 1. Abbas, S., Wong, M. S., Wu, J., Shahzad, N., Muhammad Irteza, S. (2020). Approaches of satellite remote sensing for the assessment of above-ground biomass across tropical forests: Pan-tropical to national scales. Remote Sensing, 12(20), 3351. https://doi.org/10.3390/rs12203351
- 2. Álvarez, E. R., Castiblanco, J. S., Montoya, M. M. (2024). Sustainable intensification of palm oil production through cattle integration: a review. Agroecology and Sustainable Food Systems, 48(3), 313–331. https://doi.org/10.1080/21683565.2023.2299012
- 3. Condron, L., Stark, C., O’Callaghan, M., Clinton, P., Huang, Z. (2010). The role of microbial communities in the formation and decomposition of soil organic matter. Soil microbiology and sustainable crop production, 81–118.
- 4. Cooper, H. V., Vane, C. H., Evers, S., Aplin, P., Girkin, N. T.,Sjögersten, S. (2019). From peat swamp forest to oil palm plantations: The stability of tropical peatland carbon. Geoderma, 342, 109–117. https://doi.org/10.1016/j.geoderma.2019.02.021
- 5. Glenn, D. M., Tabb, A. (2019). Evaluation of five methods to measure normalized difference vegetation index (NDVI) in apple and citrus. International Journal of Fruit Science, 19(2), 191–210. https://doi.org/10.1080/15538362.2018.1502720
- 6. Gómez, A. M., Parra, A., Pavelsky, T. M., Wise, E., Villegas, J. C., Meijide, A. (2023). Ecohydrological impacts of oil palm expansion: a systematic review. Environmental Research Letters, 18(3), 033005. https://doi.org/10.1088/1748-9326/acbc38
- 7. Guillaume, T., Bragazza, L., Levasseur, C., Libohova, Z., Sinaj, S. (2021). Long-term soil organic carbon dynamics in temperate cropland-grassland systems. Agriculture, ecosystems and environment, 305, 107184. https://doi.org/10.1016/j.agee.2020.107184
- 8. Guillaume, T., Kotowska, M. M., Hertel, D., Knohl, A., Krashevska, V., Murtilaksono, K., Kuzyakov, Y. (2018). Carbon costs and benefits of Indonesian rainforest conversion to plantations. Nature communications, 9(1), 2388. https://doi.org/10.1038/s41467-018-04755-y
- 9. Haque, M. A., Reza, M. N., Ali, M., Karim, M. R., Ahmed, S., Lee, K. D., Chung, S. O. (2024). Effects of environmental conditions on vegetation indices from multispectral images: A review. Korean Journal of Remote Sensing, 40(4), 319–341. https://doi.org/10.7780/kjrs.2024.40.4.1
- 10. Inoue, T. (2019). Carbon sequestration in mangroves. Blue carbon in shallow coastal ecosystems: Carbon dynamics, policy, and implementation, 73–99. https://doi.org/10.1007/978-981-13-1295-3_3
- 11. Komal, N., Zaman, Q. U., Yasin, G., Nazir, S., Ashraf, K., Waqas, M., Chen, Y. (2022). Carbon storage potential of agroforestry system near Brick Kilns in irrigated agro-ecosystem. Agriculture, 12(2), 295. https://doi.org/10.3390/agriculture12020295
- 12. Kotowska, M. M., Leuschner, C., Triadiati, T., Hertel, D. (2016). Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production. Oecologia, 180, 601–618. https://doi.org/10.1007/s00442-015-3481-5
- 13. Kotowska, M. M., Leuschner, C., Triadiati, T., Meriem, S., Hertel, D. (2015). Quantifying above‐and belowground biomass carbon loss with forest conversion in tropical lowlands of S umatra (Indonesia). Global change biology, 21(10), 3620–3634. https://doi.org/10.1111/gcb.12979
- 14. Lamptey, S. (2022). Agronomic practices in soil water management for sustainable crop production under rain fed agriculture of Drylands in Sub-Sahara Africa. African Journal of Agricultural Research, 18(1), 18–26. https://doi.org/10.5897/AJAR2021.15822
- 15. Liu C, Xin CZ, Shao Y, Song CJ, Hasi T, Zhu PH. (2019). Research advances of SAR remote sensing for agriculture applications: A review. J Integr Agric. 18(3), 506–525. https://doi.org/10.1016/S2095-3119(18)62016-7
- 16. Lusiana, B., Slingerland, M., Miccolis, A., Khasanah, N. M., Leimona, B.,van Noordwijk, M. (2023). Oil palm production, instrumental and relational values: the public relations battle for hearts, heads, and hands along the value chain. Current Opinion in Environmental Sustainability, 64, 101321.
- 17. Málaga, N., Hergoualc’h, K., Kapp, G., Martius, C. (2021). Variation in vegetation and ecosystem carbon stock due to the conversion of disturbed forest to oil palm plantation in Peruvian Amazonia. Ecosystems, 24(2), 351–369. https://doi.org/10.1007/s10021-020-00521-8
- 18. Marzukhi, F., Elahami, A. L., Bohari, S. N. (2016, June). Detecting nutrients deficiencies of oil palm trees using remotely sensed data. In IOP Conference Series: Earth and Environmental Science 37(1), 012040). IOP Publishing. https://doi.org/10.1088/1755-1315/37/1/012040
- 19. McMorrow J. (2001). Linear regression modelling for the estimation of oil palm age from Landsat TM. International Journal of Remote Sensing. 22(12), 2243–2264. https://doi.org/10.1080/01431160117188
- 20. Murphy, D. J. (2024). Carbon sequestration by tropical trees and crops: A case study of oil palm. Agriculture; Basel, 14(7). https://doi.org/10.3390/agriculture14071133
- 21. Page, S. E., Morrison, R., Malins, C., Hooijer, A., Rieley, J. O., Jauhiainen, J. (2011). Review of peat surface greenhouse gas emissions from oil palm plantations in Southeast Asia. ICCT white paper, 15, 1–78.
- 22. Ramos, H. M. N., Vasconcelos, S. S., Kato, O. R., Castellani, D. C. (2018). Above-and belowground carbon stocks of two organic, agroforestry-based oil palm production systems in eastern Amazonia. Agroforestry systems, 92(2), 221–237. https://doi.org/10.1007/s10457-017-0131-4
- 23. Ruysschaert, D., Salles, D. (2014). Towards global voluntary standards: Questioning the effectiveness in attaining conservation goals: The case of the Roundtable on Sustainable Palm Oil (RSPO). Ecological Economics, 107, 438–446. https://doi.org/10.1016/j.ecolecon.2014.09.016
- 24. Scriven, S. A., Waddell, E. H., Sim, S., King, H., Reynolds, G., Yeong, K. L., Hill, J. K. (2022). Supporting decision-making by companies in delivering their climate net-zero and nature recovery commitments: Synthesising current information and identifying research priorities in rainforest restoration. Global Ecology and Conservation, 40, e02305. https://doi.org/10.1016/j.gecco.2022.e02305
- 25. Song, C., Choi, H. A., Choi, E., Yang, A. R., Lee, W. K., Lim, C. H. (2024). Setting the direction of sustainable restoration projects in peatlands considering ecosystem services: Case of Jambi and Sumatra Selatan, Indonesia. Ecological Indicators, 160, 111784. https://doi.org/10.1016/j.ecolind.2024.111784
- 26. Sufardi, S., Syafruddin, S., Arabia, T., Khairullah, K., Umar, H. A. (2022). Comparison of carbon content in soil and biomass in various types of sub-optimal dryland use in Aceh Besar, Indonesia. In IOP Conference Series: Earth and Environmental Science 1116(1), 012049. IOP Publishing. https://doi.org/10.1088/1755-1315/1116/1/012049
- 27. Tan, K. P., Kanniah, K. D., Cracknell, A. P. (2012). A review of remote sensing based productivity models and their suitability for studying oil palm productivity in tropical regions. Progress in Physical Geography, 36(5), 655–679. https://doi.org/10.1177/0309133312452187
- 28. Uning, R., Latif, M. T., Othman, M., Juneng, L., Mohd Hanif, N., Nadzir, M. S. M., Takriff, M. S. (2020). A review of Southeast Asian oil palm and Its CO2 fluxes. Sustainability, 12(12), 5077. https://doi.org/10.3390/su12125077
- 29. Varkkey, H. (2012). The growth and prospects for the oil palm plantation industry in Indonesia. Oil palm industry economic journal, 12(2), 1–13.
- 30. Vidican, R., Mălinaș, A., Ranta, O., Moldovan, C., Marian, O., Ghețe, A., Cătunescu, G. M. (2023). Using remote sensing vegetation indices for the discrimination and monitoring of agricultural crops: a critical review. Agronomy, 13(12), 3040. https://doi.org/10.3390/agronomy13123040
- 31. Virkkala, A. M., Virtanen, T., Lehtonen, A., Rinne, J., Luoto, M. (2018). The current state of CO2 flux chamber studies in the Arctic tundra: A review. Progress in Physical Geography: Earth and Environment, 42(2), 162–184. https://doi.org/10.1177/0309133317745784
- 32. Xu, H., Xiao, J., Zhang, Z., Ollinger, S. V., Hollinger, D. Y., Pan, Y., Wan, J. (2020). Canopy photosynthetic capacity drives contrasting age dynamics of resource use efficiencies between mature temperate evergreen and deciduous forests. Global Change Biology, 26(11), 6156–6167. https://doi.org/10.1111/gcb.15312
- 33. Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E., Tucker III, C. J., Yengoh, G. T., Tucker, C. J. (2016). Applications of NDVI for land degradation assessment. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations, 17–25. https://doi.org/10.1007/978-3-319-24112-8_3
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-627a2d0d-c69a-4df5-8f32-c1a9559b4365
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.