INFORMATION
SYSTEMS IN

MANAGEMENT Information Systems in Management (2017) Vol. % {23-153

THE GPU PERFORMANCE IN COORDINATION OF
PARALLEL TASKS IN ACCESS TO RESOURCE GROUPS
WITHOUT CONFLICTS

MATEUSZ SMOLINSKI

Institute of Information Technology, Lodz Universif Technology

In high contention environments, with limited numbef shared resources,
elimination of resource conflicts between taskscpssed in parallel is required.
Execution of all tasks without resource conflicendoe achieved by preparing a
proper overall schedule for all of them. The effeztcalculation of conflict-free
execution plan for tasks provides the conflictlesheduling algorithm that is
dedicated to GPU massively parallel processing. Tbeflictless scheduling
algorithm base on rapid resource conflict detectiomutual exclusion of conflicted
tasks in access to global resources and is amatiee to other task synchronization
methods. This article presents the performance @dam GPU in calculations of
adaptive conflictless task schedule. The performamalysis also takes into account
all data transfers to and from the GPU memory imows phases of the conflictless
task scheduling algorithm.

Keywords: Resource conflict elimination, conflicteé task execution, mutual
exclusion, deadlock avoidance, cooperative connayrecontrol, GPU massively
parallel processing, SIMD control SISD, GPGPU usduenCL.

1. Introduction

Modern software development requires parallel tagdcessing to provide
high performance. This follows directly from thenstruction of computers that
usually have multiple processing units. Buildingralti-process application or
multithreaded program requires access control abail resources. To meet the
correctness requirements software developers userkriconcurrency solutions
that generally can be classified as competitiveanperative concurrency [6,7].
Separation of concurrency problems and selectiosyon€hronization mechanisms
with their appropriate usage in code is a sourcepuaiblems in software
development. Additionally software developer haghioose fine or coarse grain
strategy for synchronization of access to globadoweces. Using multiple
synchronization mechanisms programmer can encoutask starvation or
deadlock problem. Together with an increasing numbie tasks and global
resources increases the difficulty of preparingpaert concurrent program. This
problem especially concerns high contention envirents i.e. DBMS, OLTP.

As alternative software developer can group ressurgccording to their
usage in program (the division into tasks) and oseflictless scheduling to
coordinate tasks in access to global resourcespiidmpsed model of parallel task
processing frees the programmer from controllirgik$aaccess to global resources
to ensure mutual exclusion [4]. Using conflictlexheduling there is no need to
use other synchronization mechanism to manageadiboc of global resources.
The conflictless scheduling can be applied in vaitask processing environments
and is fully responsible for tasks coordinatioratzess groups of global resources
without any resource conflicts. Using conflictlessheduling also guarantees no
task starvation or deadlock in access to resougamagp required by task [5]. This
universal task coordination approach bases on ragiglirce conflict detection and
preparation of schedule, which ensures parallédstaxecution without resources
conflicts. When one task finishes its executiomthther conflicted tasks is started,
according to calculated earlier conflictless scledall calculations of conflictless
schedules need to be performed frequently and a&klguas possible, but not
engaging with the task resources.

Therefore an isolated computing environment wapgsed, which is single
GPU card, to calculate conflictless schedule. Towflictless scheduling concept
with massively parallel GPU processing was preserge figure 1. Efficient
calculation of conflictless schedule with GPU regsidedicated data structures
and algorithm, which will be presented in next deapAlso example of GPU
performance results, obtained using prepared aatBonulator software, will be
presented. Also analysis of those results will iseussed in the following sections.

144

[t Gl <5

Active tasks executed in parallel

FIFO" t t ||t n
. @E—g‘” My The algorithm dedicated to GPU
FIFO", | [El[E] <c", 0
FIFO", Faltt] <, e
FIFO", EJE]E] <c", B e,
i tec, 2V D
FIFO", | EJE]G] C’, —51
. teC, i i - >
———— D teC,
| , : = >
FiFo", [] <C, e | e N
Waiting tasks in class queues ; | i .
n-1 n n+l n+2 nt+3

The adaptive conflictless schedule
determined for active task, which first
finishes its execution

Figure 1. The concept of task coordination in access to dlasurces
using conflictless scheduling

2. The conflictless scheduling

Application of conflictless task scheduling is pbssonly if all assumptions
about environment are fulfilled. The first assuraptrequires that task processing
environment has high contention of resources aacdtimber of global resources is
static. High level of contention means that evaskthas at least one conflict with
others in access to limited number of global resesir Second assumption requires
that before task execution begin all its globaloteses has to be known. All
required by task resources has to be known in thent, when task is created. It
is worth to mention, that the task execution tidesnot have to be known and
there are no task priorities.

Using binary resource identifiers tasks can be gedun classes, where each
class represents tasks that require the same spoludl resources with identical
pattern of access operations to each of thenm-tln point in time the task class
definition:

C={t: IRW=IRW, JIR = IR¢} (2)

145

where:
n — represents value of logical time,
- represents logical conjunction,
IRW — bits sequence that represents resources read®by task;,
IR, — bits sequence that represents resources omloketask;

Each task class has own FIFO queue, which detesngrecution order for
waiting tasks from the same class. Requested wmsitlacated to queue by its
binary resource identifiedkRW andIR, which represents group of global resources
that are required by task with its access patterad(only/write only/read and write
operations). Class task queues are emptied acgotdinconflictless schedule
determined ta-th point in time. Each task has timestamp deteeghiby logical
time, which represents moment of its appearandask processing environment.
Therefore conflictless scheduling bases on comestaging of class queues, where
all tasks executed in parallel have no resourcdlicobrEach finish of active task
and change in class task queues determine next ipoiogical time. This also
means that all task executions with distinctionstart and finish, have to be
reported (even task execution finish with errorhisTallows to control, which
waiting tasks can be executed, when last activélicad task finish its execution.
Not knowing the finish time of active tasks we eeait for completion one of them
and then calculate suitable conflictless schedboig, this introduces additional
delays in task processing environments. Alternbtivee can calculate in advance
many conflictless schedules, one for each actiek.tdhis approach requires
efficient processing environment for preparatiomyneonflict less schedules, each
one S\ for every active task [0 R" and for fixedn-th point in time. To calculate
schedules effectively was chosen massively pargllelcessing environment
supported by modern GPU card. However developmdntemlicated GPU
algorithm to effective calculation of conflictlesshedules requires fast resource
conflict detection between tasks. This problem wgasved using two binary
resource identifiers IRW and IR, which are assigte@ach task and represents
global resources that are used by this task operatith distinction read only
resources.

Binary resource identifiers allow rapid conflict téetion between tasks,
details and examples are presented in other ptiblisa[4, 5]. The resource
conflict detection between two tasks belonging eesipely to class & and C, can
be check by simple condition:

(IRW, and IRW) xor (IR, and IR) # 0 2)

If above condition is satisfied, then exists atsteane resource conflict
between task classes, determined by only threelaitvipary operators and one
comparison. This means that every two tasks, frbwsd classes cannot be

146

executed in parallel, its execution order has tadégrmined by its logical time
values. If resource conflict is detected betweaskdathen longer waiting task has
to be executed at first. This rule prevents tas&svation and deadlock because
some task could get stuck in the class queue [5].

3. The GPU algorithm for determination conflictlessschedule

Modern GPU processing environment is an exampleSBfiID (Single
Instruction stream Multiple Data streams) in Flyntéxonomy in contrast to task
processing environments that are classified as SiSBgle Instruction stream
Single Data stream) [2]. Single GPU card is isalapFocessing environment
because processing units can share GPU memory(isgeglobal memory), but
cannot directly access to memory located beyond @&id. Designing of GPU
algorithm requires taking into account all memansfers between host system
and GPU memory. To avoid unnecessary data tranafetsepeated calculations
we propose some dedicated data structures: cordlicly and conflict lists.
A conflict array stores information about resourcenflicts between classes.
Whereas a conflict list is kept for each task clasd stores all classes that are in
conflict with it. Task classes are identified ost by numbers and the conflict list
contains only selection of those conflicted clasHest queues are not empty. The
order of task classes in conflict list is fixed foyjestamps of oldest task waiting in
class queue.

Developed algorithm has four phases - respectidelyoted: SORT, CAT,
ACS, CLS, that are processed sequentially. Eackephas prepared computation
kernel dedicated to GPU processing. To determinmralictless schedule, all
phases have to be processed sequentially, bedagisgalculation results of the
previous stage are used in next computation phaséould be noted that those
results between computation stages are stored b @8mory, which minimize
unnecessary data transfer between host and GPU nyehdlitionally due to the
features of the GPU memory (in particular of thetnietions on the local memory),
in each phase of presented algorithm, all comprtatihave to be divided into
work-groups. All calculations in a single work-gpuare run in the same
computation unit, using its many processing elemelnt each phase has to be
established a number of work-groups and its dinoaissiln all phases of presented
algorithm all work groups have only one dimensiou, its size varies.

In first computing SORT phase all task classes hewvebe ordered by
timestamps of oldest waiting task located in clgsgue. This first stage of
presented algorithm provides classes sorting ircateting order determined by
logical time values. To solve this problem in masli parallel environment there
was used sorting by counting, because assignedsts tlogical time values are
unique [1]. Each GPU processing unit has to caleydasitions in sorting order for

147

fixed number of classes, which is determined by kagoup size. Calculated
positions are stored in local memory; this alloasignificantly reduce number of
write operations in global GPU memory. Due to latiiin of local memory size the
work group size was statically fixed to 16. Numbé&work-groups in first phase is
calculated as number of all classes with not emyoigues divided by number of
work group size. Therefore in processing unit eacke with 16 processing
elements has to count for fixed class number, hamyntlasses have greater value
of logical time for oldest waiting task. All calaied counter values are stored in
local memory and sets class positions in sortimgot the end of the first phase
numbers of sorted classes are stored in global meriey will be used in next
computation phase of presented algorithm.

Second computing CAT stage is responsible for ¢aticuns of conflict class
array and lists of conflicted classes. Similathge humber and size of work-groups
are identical as in previous phase. Resource ctmflietween classes is determined
according to the relation (2), calculations ardqrened for all pairs of task classes.
Each processing element for fixed class verifiedlm with any other task class,
recording results in conflict array as boolean gahAnd store all numbers of
conflicted class in conflict list. This conflictsli is created individually for each
task class. Class order in resource conflict v&iion is fixed according to
previous computation phase. In example, for fixed< the conflicted class with
the oldest waiting task will have always first pgmsi on its list of conflicted
classes. It also should be noted that each clasowftict list is a candidate to
participate its conflictless schedule, when actagk from fixed class finishes its
execution.

In third ACS phase a set of active classes is s&ledhis selection shows
classes that tasks are executed in parallel witlouflicts in access to global
resources. Knowledge of active classes is requiceéstablish the number of
conflictless schedules that will be calculated éxtrphase of presented algorithm.
Calculations of largest collection of active clas® performed in single work-
group, which has maximum size determined by GPUciipation (usually
work-group size is limited up to 1024). In this phahe data from conflict array
and conflict list are used, which improves compatat

The last computation CLS phase of proposed algurith responsible for
determination of conflictless schedules, which nanib determined by cardinality
of active class seR". This fourth algorithm phase is the most importémt
conflictless task scheduling, because for eaclveadtisk it calculates the set of
classes which tasks can start execution in paialielediately after this active task
finish. In CLS phase number of work-groups is equih cardinality of active
class set, so every processing unit calculatea@ only one conflictless schedule
for single active class. Size of work groups ised®ined dynamically according to
the maximum number of classes in conflict listepared for the active classes.

148

Calculation of single conflictless schedule for oofe active classes bases on
content its conflict list. According to list ordamong classes has to be selected this
subset, that have no resource conflict each otbalculations of this subset is
realised by many processing elements that divide wlork between each other.
This allows for efficient use of GPU resources &fprm all operations in this
algorithm phase. In CLS computation phase was ogéichisations in access to
memory areas. In each iteration of CLS phase otasslidates to conflictless
schedule were temporary stored in local memoryrotessing units. After then
a subset of class candidates was written in glo@mory, so in each iteration
number of writes to global memory was minimised.

Presented phase decomposition of conflictless siingdalgorithm show
how features of massively processing GPU envirotraesm adjusted to efficient
determination of conflictless schedule. How muchespnted deterministic
conflictless scheduling algorithm is dedicated todern GPU, it will be shown in
next chapter. This algorithm was implemented ushpgnCL standard in software
simulator of task processing environment, whichngsmodern GPU card can
calculate conflictless schedule adapted to stataesf processing environment with
high contention of global resources [3]. Preparefinvare simulator allows for
define various task classes environment and foh edicthem can perform all
phases of presented algorithm. Additionally sinmiagoftware measures time of
each phase computation using GPU and CPU, whicbwsll comparing
performances in calculations of conflictless schedn both computing sources.
The measured results of computation, for exampénaio of task processing
environment, are presented in next section.

4. The calculation performance of conflictless sclleles

The created simulator software will be used to gmesesults of computation
adaptive conflictless schedule in various task @semg environments. This
simulator implements conflictless scheduling algon presented in previous
chapter. All calculation results were made in GNUx operating system from
CentOS 7.2 distribution with kernel version 3.182¢.36.3.el7.x86_64 using two
computing sources: GPU and CPU. The computer sgaibiin includes Intel Core
i5-2400 with 32 GB of RAM. The GPU used in compiatatis NVidia GTX 980
Titan with 2816 processing elements and 6 GB of ®BDnemory with OpenCL
version 1.2 and drivers from CUDA software in versi7.5.30. The GPU
specification determines limits of task classes agidbal resources in
environments. In the presented configuration thaber of classes is up to 16368
and number of global resources is limited to 32768.

149

The computation performance of adaptive conflistleschedule will be
presented for sample task processing environmeritis kigh contention of
resources. Each testing scenario includes othdr pascessing environments,
which has fixed number of task classes and theiflico dependencies, also
number of global resources that are used by tasKixéd for each scenario.
Performance results presented for each testingagoewill include total time of
calculation conflictless schedule using only CPd &PU. Separately computation
times are presented for each phase of conflictlesseduling algorithm,
additionally times of data transfers between GPU lamst computer memory are
shown in each algorithm phase. This allows to bidiacompare the performance
calculations of conflictless schedules using matgiparallel GPU processing and
sequential processing with single core of CPU.

The simulator software create all data for selestmhario defined by number
of task classes and number of global resourcessiimes that in all tasks classes
are waiting tasks and there are resource contlieteseen them. In all scenarios
each task belongs to only one class and has tanassy global resources that
generate resource conflicts between them. All lgin@source identifiers for classes
and timestamps for oldest tasks located in classuem are prepared by
simulator software.

The first example of scenario has 5000 task claasds64 global resources.
The level of conflicts between those classes %4 @umber of classes that tasks
are active is 32. Therefore in this scenario 32flatiess schedules will be
calculated using CPU and GPU. The computation pmdace for first scenario
with timing results of all phases of conflictlessheduling algorithm is presented
in Table 1.

Table 2.Performance results for conflictless schedulingwated with CPU and GPU for
scenario with 5000 task classes and 64 resources

GPU transfer | GPU processing| GPU transfer and | CPU processing
time (us) time (us) processing time (U9 time (Us)
SORT 199 32 231 24647
CAT 458 421 879 80051
ACS 10 38 48 209
CLS 902 16 918 108
total 1569 507 2076 105015

Results from Table 1 show that in total GPU proecgs®f 32 conflictless
schedules is over 200 times faster than processitiy CPU. In all algorithm
phases this data processing time for GPU is béli@n using one core CPU.
Including data transfer to and from GPU memory walktons of conflictless
schedules are in total 50 times faster than usipig.C

150

Table 2.Performance results for conflictless schedulingwaked with CPU and GPU for
scenario with 16368 task classes and 64 resources

GPU transfer | GPU processing| GPU transfer and | CPU processing
time (us) time (us) processing time (U9 time (us)
SORT 241 146 387 755985
CAT 2623 2174 4797 112396
ACS 11 40 51 694
CLS 1510 17 1527 577
total 4385 2377 6762 869652

Second task processing environment has 16368 taskes and 64 global
resources. Also in second scenario level of canietween classes and number of
active classes is the same as in first scenari@ parformance results in
calculation of conflictless schedules for seconghacio are presented in Table 2.
Comparison of CPU and GPU processing time in secmetario shows that in
total GPU is 365 times faster than CPU. Includin@Usdata transfers its
performance dominance is 128 times faster. Thisast® demonstrate also that
increasing number of task classes causes obsemuabléme in SORT and CAT
phases of conflictless scheduling algorithm, beeahere are dependent on the
number of task classes. Processing in ACS and Ch&sep of algorithm is
dependent on number of active classes.

The third scenario represents task processing@mwient that has 16368 task
classes and 1024 global resources. Number of agigses is 202 and the level of
conflicts between task classes is 1.2%. The contipuatgerformance for third
scenario with timing results of all phases of cotifss scheduling algorithm is
presented in Table 3.

Table 3.Performance results for conflictless schedulingwaked with CPU and GPU for
scenario with 16368 task classes and 1024 resources

GPU transfer | GPU processing| GPU transfer and | CPU processing
time (us) time (us) processing time (U9 time (us)
SORT 216 154 434 751790
CAT 3661 2086 5747 13463
ACS 12 40 52 4670
CLS 5310 175 5485 3230
total 9263 2455 11718 773153

In third example scenario GPU processing was 3tidgifaster than CPU and
including data transfers it was 66 times fastecdmparison to previous scenarios
number of global resources is 16 times greatertwhased respectively longer
resource binary identifiers. This especially affedtiration of CAT and CLS phases
of algorithm. Generally greater number of globalowces extends calculations of

151

conflictless schedules. For CLS phase is also itapbmumber of active classes
those tasks are active. This determines numbeortfictless schedules to process
in CLS phase.

As observed in examples scenarios data processialy algorithm phases is
realized more efficiently using GPU. This rationiet always profitable in case,
when also GPU data transfers are included. For pbeam CLS phase processing
and data transfers by GPU is not efficient as CHié reason is transferring from
GPU in CLS phase all calculated conflictless schesjdrom which only one will
be used. The software simulator transfers them aalyprint all determined
conflictless schedules.

5. Conclusions

The created simulator software verifies the tasérdimation concept using
modern GPU card and dedicated conflictless schaglaligorithm. It also enables
the performance measurement of GPU processingtarrdiming the conflictless
schedules for various task processing environmewite high contention of
resources. Adjustment of conflictless schedulingpathm to massively parallel
processing by GPU and division to calculation stagessures the effective
calculation of conflictless schedules. As show Iy tesults of experiments using
modern GPU conflictless schedules can be calculatednilliseconds using
deterministic algorithm. If time resolution of taskecutions also is in milliseconds
then calculations of conflictless schedules canpbdormed in advance. Then
conflictless schedule can be determined beforeutiagr of active task finishes.
This is because GPU card provides isolated comgpuénvironment, which
resources are not used in task processing envimsme

The GPU efficiency in determination of conflictlesshedules was confirmed
in experiments, where computation results were iobtaby GPU many times
faster than by single core of CPU. Even includirRl&lata transfers the results of
computation were better that using CPU. This alldesconclude, that novel
approach of task coordination in access to gloesdurces can be done efficiently
using GPU conflictless scheduling. This approach s@nificantly facilitate
developments of multitasking software in environtsewith high contention of
resources. Software developer using conflictlebgduling is not obligated to use
any other synchronization mechanism, because atiurees conflicts will be
eliminated automatically. There is also no posijbilo the occurrence of task
starvation in access to the global resources, Isecaonflictless scheduling
guarantees them access in a finite time. Even delatbetween tasks cannot occur
due to wrong global resources allocation.

The conflictless scheduling is designed to highteotion environments with
limited number of global resources, where set bferjuired resources is known

152

for each task before its execution begins. As distddl in computation
experiments also task execution time should bedorigat minimum limit to
determine required conflictless schedule in advambé minimum task duration
limit is dependent on task environment parametkesriumber of global resources
and number of task classes, also it is depende@Rld specification. The GPU
card equipped with more memory or more efficienbcessing elements will
provide faster determination of adaptive conflisleschedule than presented in
this paper.

REFERENCES

[1]

(2]
(3]

[4]

[5]
[6]
[7]

Amato N., Ravishankar lyer R., Sundaresan S., and¥V(1998)A Comparison of
Parallel Sorting Algorithms on Different Architects Technical Report. Texas A &
M University, College Station, TX, USA.

Flynn M.J., Rudd R. W. (1996parallel architectures ACM Computing Surveys,
Volume 28, Issue 1, 67-70

Martineau M., McIntosh-Smith S., Boulton M., GaudW (2016).An Evaluation of

Emerging Many-Core Parallel Programming Model®n Proceedings of the 7th
International Workshop on Programming Models angl&ations for Multicores and
Manycores (PMAM'16), Pavan Balaji and Kai-Cheunquhg (Eds.). ACM, New

York, NY, USA

Smolinski, M. (2016)Coordination of Parallel Tasks in Access to Reseucoups by
Adaptive Conflictless Schedulingeyond Databases, Architectures and Structures.
Advanced Technologies for Data Mining and Knowle@gscovery

Smoliaski, M. (2016) Elimination of task starvation in conflictless sdaéng
concept Information Systems in Management \ol. 5, NQ2Z{—247

Stallings W. (2015)Operating systems, Internals and Design Principlesarson
Education, 8th edition

Tanenbaum, A., Bos H. (201¥)odern operating systemBrentice Hall, 4th edition

153

