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In high contention environments, with limited number of shared resources, 
elimination of resource conflicts between tasks processed in parallel is required. 
Execution of all tasks without resource conflicts can be achieved by preparing a 
proper overall schedule for all of them. The effective calculation of conflict-free 
execution plan for tasks provides the conflictless scheduling algorithm that is 
dedicated to GPU massively parallel processing. The conflictless scheduling 
algorithm base on rapid resource conflict detection to mutual exclusion of conflicted 
tasks in access to global resources and is an alternative to other task synchronization 
methods. This article presents the performance of modern GPU in calculations of 
adaptive conflictless task schedule. The performance analysis also takes into account 
all data transfers to and from the GPU memory in various phases of the conflictless 
task scheduling algorithm. 
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1. Introduction 

Modern software development requires parallel task processing to provide 
high performance. This follows directly from the construction of computers that 
usually have multiple processing units. Building a multi-process application or 
multithreaded program requires access control to global resources. To meet the 
correctness requirements software developers use known concurrency solutions 
that generally can be classified as competitive or cooperative concurrency [6,7]. 
Separation of concurrency problems and selection of synchronization mechanisms 
with their appropriate usage in code is a source of problems in software 
development. Additionally software developer has to choose fine or coarse grain 
strategy for synchronization of access to global resources. Using multiple 
synchronization mechanisms programmer can encounter task starvation or 
deadlock problem. Together with an increasing number of tasks and global 
resources increases the difficulty of preparing a correct concurrent program. This 
problem especially concerns high contention environments i.e. DBMS, OLTP. 

As alternative software developer can group resources according to their 
usage in program (the division into tasks) and use conflictless scheduling to 
coordinate tasks in access to global resources. The proposed model of parallel task 
processing frees the programmer from controlling tasks access to global resources 
to ensure mutual exclusion [4]. Using conflictless scheduling there is no need to 
use other synchronization mechanism to manage allocation of global resources. 
The conflictless scheduling can be applied in various task processing environments 
and is fully responsible for tasks coordination to access groups of global resources 
without any resource conflicts. Using conflictless scheduling also guarantees no 
task starvation or deadlock in access to resources group required by task [5]. This 
universal task coordination approach bases on rapid resource conflict detection and 
preparation of schedule, which ensures parallel tasks execution without resources 
conflicts. When one task finishes its execution then other conflicted tasks is started, 
according to calculated earlier conflictless schedule. All calculations of conflictless 
schedules need to be performed frequently and as quickly as possible, but not 
engaging with the task resources.  

Therefore an isolated computing environment was proposed, which is single 
GPU card, to calculate conflictless schedule. The conflictless scheduling concept 
with massively parallel GPU processing was presented on figure 1. Efficient 
calculation of conflictless schedule with GPU requires dedicated data structures 
and algorithm, which will be presented in next chapter. Also example of GPU 
performance results, obtained using prepared author’s simulator software, will be 
presented. Also analysis of those results will be discussed in the following sections. 
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Figure 1. The concept of task coordination in access to global resources 

using conflictless scheduling 

2. The conflictless scheduling 

Application of conflictless task scheduling is possible only if all assumptions 
about environment are fulfilled. The first assumption requires that task processing 
environment has high contention of resources and the number of global resources is 
static. High level of contention means that every task has at least one conflict with 
others in access to limited number of global resources. Second assumption requires 
that before task execution begin all its global resources has to be known. All 
required by task resources has to be known in the moment, when task is created.  It 
is worth to mention, that the task execution times do not have to be known and 
there are no task priorities. 

Using binary resource identifiers tasks can be grouped in classes, where each 
class represents tasks that require the same set of global resources with identical 
pattern of access operations to each of them. In n-th point in time the task class 
definition: 

Cn
k = { ti: IRWi = IRWk ∧ IRi = IRk}     (1) 
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where: 
n – represents value of logical time, 
∧ – represents logical conjunction, 
IRWi – bits sequence that represents resources read or write by task ti, 
IRi – bits sequence that represents resources only read by task ti 

 

Each task class has own FIFO queue, which determines execution order for 
waiting tasks from the same class. Requested task is allocated to queue by its 
binary resource identifiers IRW and IR, which represents group of global resources 
that are required by task with its access pattern (read only/write only/read and write 
operations). Class task queues are emptied according to conflictless schedule 
determined to n-th point in time. Each task has timestamp determined by logical 
time, which represents moment of its appearance in task processing environment. 
Therefore conflictless scheduling bases on correct managing of class queues, where 
all tasks executed in parallel have no resource conflict. Each finish of active task 
and change in class task queues determine next point in logical time. This also 
means that all task executions with distinction to start and finish, have to be 
reported (even task execution finish with error). This allows to control, which 
waiting tasks can be executed, when last active conflicted task finish its execution. 
Not knowing the finish time of active tasks we can wait for completion one of them 
and then calculate suitable conflictless schedule, but this introduces additional 
delays in task processing environments. Alternatively we can calculate in advance 
many conflictless schedules, one for each active task. This approach requires 
efficient processing environment for preparation many conflict less schedules, each 
one Sn

k for every active task tk ∈ Rn and for fixed n-th point in time. To calculate 
schedules effectively was chosen massively parallel processing environment 
supported by modern GPU card. However development of dedicated GPU 
algorithm to effective calculation of conflictless schedules requires fast resource 
conflict detection between tasks. This problem was solved using two binary 
resource identifiers IRW and IR, which are assigned to each task and represents 
global resources that are used by this task operation with distinction read only 
resources. 

Binary resource identifiers allow rapid conflict detection between tasks, 
details and examples are presented in other publications [4, 5]. The resource 
conflict detection between two tasks belonging respectively to class Cnx and Cn

y can 
be check by simple condition:  

 (IRWx and IRWy) xor (IRx and IRy) ≠ 0   (2) 

If above condition is satisfied, then exists at least one resource conflict 
between task classes, determined by only three simple binary operators and one 
comparison. This means that every two tasks, from those classes cannot be 
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executed in parallel, its execution order has to be determined by its logical time 
values. If resource conflict is detected between tasks, then longer waiting task has 
to be executed at first. This rule prevents tasks starvation and deadlock because 
some task could get stuck in the class queue [5]. 

3. The GPU algorithm for determination conflictless schedule  

Modern GPU processing environment is an example of SIMD (Single 
Instruction stream Multiple Data streams) in Flynn’s taxonomy in contrast to task 
processing environments that are classified as SISD (Single Instruction stream 
Single Data stream) [2]. Single GPU card is isolated processing environment 
because processing units can share GPU memory area (i.e. global memory), but 
cannot directly access to memory located beyond GPU card. Designing of GPU 
algorithm requires taking into account all memory transfers between host system 
and GPU memory. To avoid unnecessary data transfers and repeated calculations 
we propose some dedicated data structures: conflict array and conflict lists. 
A conflict array stores information about resource conflicts between classes. 
Whereas a conflict list is kept for each task class and stores all classes that are in 
conflict with it. Task classes are identified on list by numbers and the conflict list 
contains only selection of those conflicted classes, that queues are not empty. The 
order of task classes in conflict list is fixed by timestamps of oldest task waiting in 
class queue.  

Developed algorithm has four phases - respectively denoted: SORT, CAT, 
ACS, CLS, that are processed sequentially. Each phase has prepared computation 
kernel dedicated to GPU processing. To determine a conflictless schedule, all 
phases have to be processed sequentially, because the calculation results of the 
previous stage are used in next computation phase. It should be noted that those 
results between computation stages are stored in GPU memory, which minimize 
unnecessary data transfer between host and GPU memory. Additionally due to the 
features of the GPU memory (in particular of the restrictions on the local memory), 
in each phase of presented algorithm, all computations have to be divided into 
work-groups. All calculations in a single work-group are run in the same 
computation unit, using its many processing elements. In each phase has to be 
established a number of work-groups and its dimensions. In all phases of presented 
algorithm all work groups have only one dimension, but its size varies. 

In first computing SORT phase all task classes have to be ordered by 
timestamps of oldest waiting task located in class queue. This first stage of 
presented algorithm provides classes sorting in descending order determined by 
logical time values. To solve this problem in massively parallel environment there 
was used sorting by counting, because assigned to tasks logical time values are 
unique [1]. Each GPU processing unit has to calculate positions in sorting order for 
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fixed number of classes, which is determined by work-group size. Calculated 
positions are stored in local memory; this allows to significantly reduce number of 
write operations in global GPU memory. Due to limitation of local memory size the 
work group size was statically fixed to 16. Number of work-groups in first phase is 
calculated as number of all classes with not empty queues divided by number of 
work group size. Therefore in processing unit each one with 16 processing 
elements has to count for fixed class number, how many classes have greater value 
of logical time for oldest waiting task. All calculated counter values are stored in 
local memory and sets class positions in sorting order. At the end of the first phase 
numbers of sorted classes are stored in global memory, they will be used in next 
computation phase of presented algorithm. 

Second computing CAT stage is responsible for calculations of conflict class 
array and lists of conflicted classes. Similarly, the number and size of work-groups 
are identical as in previous phase. Resource conflicts between classes is determined 
according to the relation (2), calculations are performed for all pairs of task classes. 
Each processing element for fixed class verifies conflict with any other task class, 
recording results in conflict array as boolean value and store all numbers of 
conflicted class in conflict list. This conflict list is created individually for each 
task class. Class order in resource conflict verification is fixed according to 
previous computation phase. In example, for fixed class the conflicted class with 
the oldest waiting task will have always first position on its list of conflicted 
classes. It also should be noted that each class on conflict list is a candidate to 
participate its conflictless schedule, when active task from fixed class finishes its 
execution.  

In third ACS phase a set of active classes is selected. This selection shows 
classes that tasks are executed in parallel without conflicts in access to global 
resources. Knowledge of active classes is required to establish the number of 
conflictless schedules that will be calculated in next phase of presented algorithm. 
Calculations of largest collection of active class are performed in single work-
group, which has maximum size determined by GPU specification (usually 
work-group size is limited up to 1024). In this phase the data from conflict array 
and conflict list are used, which improves computation.  

The last computation CLS phase of proposed algorithm is responsible for 
determination of conflictless schedules, which number is determined by cardinality 
of active class set Rn. This fourth algorithm phase is the most important for 
conflictless task scheduling, because for each active task it calculates the set of 
classes which tasks can start execution in parallel immediately after this active task 
finish. In CLS phase number of work-groups is equal with cardinality of active 
class set, so every processing unit calculates at once only one conflictless schedule 
for single active class. Size of work groups is determined dynamically according to 
the maximum number of classes in conflict lists, prepared for the active classes. 
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Calculation of single conflictless schedule for one of active classes bases on 
content its conflict list. According to list order among classes has to be selected this 
subset, that have no resource conflict each other. Calculations of this subset is 
realised by many processing elements that divide this work between each other. 
This allows for efficient use of GPU resources to perform all operations in this 
algorithm phase. In CLS computation phase was used optimisations in access to 
memory areas. In each iteration of CLS phase class candidates to conflictless 
schedule were temporary stored in local memory of processing units. After then 
a subset of class candidates was written in global memory, so in each iteration 
number of writes to global memory was minimised. 

Presented phase decomposition of conflictless scheduling algorithm show 
how features of massively processing GPU environment are adjusted to efficient 
determination of conflictless schedule. How much presented deterministic 
conflictless scheduling algorithm is dedicated to modern GPU, it will be shown in 
next chapter. This algorithm was implemented using OpenCL standard in software 
simulator of task processing environment, which using modern GPU card can 
calculate conflictless schedule adapted to state of task processing environment with 
high contention of global resources [3]. Prepared software simulator allows for 
define various task classes environment and for each of them can perform all 
phases of presented algorithm. Additionally simulator software measures time of 
each phase computation using GPU and CPU, which allows comparing 
performances in calculations of conflictless schedule in both computing sources. 
The measured results of computation, for example scenario of task processing 
environment, are presented in next section. 

4. The calculation performance of conflictless schedules  

The created simulator software will be used to present results of computation 
adaptive conflictless schedule in various task processing environments. This 
simulator implements conflictless scheduling algorithm presented in previous 
chapter. All calculation results were made in GNU/Linux operating system from 
CentOS 7.2 distribution with kernel version 3.10.0-327.36.3.el7.x86_64 using two 
computing sources: GPU and CPU. The computer specification includes Intel Core 
i5-2400 with 32 GB of RAM. The GPU used in computation is NVidia GTX 980 
Titan with 2816 processing elements and 6 GB of GDDR5 memory with OpenCL 
version 1.2 and drivers from CUDA software in version 7.5.30. The GPU 
specification determines limits of task classes and global resources in 
environments. In the presented configuration the number of classes is up to 16368 
and number of global resources is limited to 32768. 
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The computation performance of adaptive conflictless schedule will be 
presented for sample task processing environments with high contention of 
resources. Each testing scenario includes other task processing environments, 
which has fixed number of task classes and their conflict dependencies, also 
number of global resources that are used by tasks is fixed for each scenario. 
Performance results presented for each testing scenario will include total time of 
calculation conflictless schedule using only CPU and GPU. Separately computation 
times are presented for each phase of conflictless scheduling algorithm, 
additionally times of data transfers between GPU and host computer memory are 
shown in each algorithm phase. This allows to reliable compare the performance 
calculations of conflictless schedules using massively parallel GPU processing and 
sequential processing with single core of CPU. 

The simulator software create all data for selected scenario defined by number 
of task classes and number of global resources, it assumes that in all tasks classes 
are waiting tasks and there are resource conflicts between them. In all scenarios 
each task belongs to only one class and has to use many global resources that 
generate resource conflicts between them. All binary resource identifiers for classes 
and timestamps for oldest tasks located in class queues are prepared by 
simulator software. 

The first example of scenario has 5000 task classes and 64 global resources. 
The level of conflicts between those classes is 4.6%, number of classes that tasks 
are active is 32. Therefore in this scenario 32 conflictless schedules will be 
calculated using CPU and GPU. The computation performance for first scenario 
with timing results of all phases of conflictless scheduling algorithm is presented 
in Table 1. 

 
Table 2. Performance results for conflictless scheduling calculated with CPU and GPU for 

scenario with 5000 task classes and 64 resources 

 GPU transfer 
time (µs) 

GPU processing 
time (µs) 

GPU transfer and 
processing time (µs) 

CPU processing 
time (µs) 

SORT 199  32 231 24647 
CAT 458 421 879 80051 
ACS 10 38 48 209 
CLS 902 16 918 108 
total 1569 507 2076 105015 

 
Results from Table 1 show that in total GPU processing of 32 conflictless 

schedules is over 200 times faster than processing with CPU. In all algorithm 
phases this data processing time for GPU is better than using one core CPU. 
Including data transfer to and from GPU memory calculations of conflictless 
schedules are in total 50 times faster than using CPU. 
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Table 2. Performance results for conflictless scheduling calculated with CPU and GPU for 
scenario with 16368 task classes and 64 resources 

 GPU transfer 
time (µs) 

GPU processing 
time (µs) 

GPU transfer and 
processing time (µs) 

CPU processing 
time (µs) 

SORT 241  146 387 755985 
CAT 2623 2174 4797 112396 
ACS 11 40 51 694 
CLS 1510 17 1527 577 
total 4385 2377 6762 869652 

 
Second task processing environment has 16368 task classes and 64 global 

resources. Also in second scenario level of conflict between classes and number of 
active classes is the same as in first scenario. The performance results in 
calculation of conflictless schedules for second scenario are presented in Table 2. 
Comparison of CPU and GPU processing time in second scenario shows that in 
total GPU is 365 times faster than CPU. Including GPU data transfers its 
performance dominance is 128 times faster. This scenario demonstrate also that 
increasing number of task classes causes observable rise time in SORT and CAT 
phases of conflictless scheduling algorithm, because there are dependent on the 
number of task classes. Processing in ACS and CLS phase of algorithm is 
dependent on number of active classes. 

The third scenario represents task processing environment that has 16368 task 
classes and 1024 global resources. Number of active classes is 202 and the level of 
conflicts between task classes is 1.2%. The computation performance for third 
scenario with timing results of all phases of conflictless scheduling algorithm is 
presented in Table 3. 
 
Table 3. Performance results for conflictless scheduling calculated with CPU and GPU for 

scenario with 16368 task classes and 1024 resources 

 GPU transfer 
time (µs) 

GPU processing 
time (µs) 

GPU transfer and 
processing time (µs) 

CPU processing 
time (µs) 

SORT 216  154 434 751790 
CAT 3661 2086 5747 13463 
ACS 12 40 52 4670 
CLS 5310 175 5485 3230 
total 9263 2455 11718 773153 

 
In third example scenario GPU processing was 314 times faster than CPU and 

including data transfers it was 66 times faster. In comparison to previous scenarios 
number of global resources is 16 times greater, what caused respectively longer 
resource binary identifiers. This especially affects duration of CAT and CLS phases 
of algorithm. Generally greater number of global resources extends calculations of 
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conflictless schedules. For CLS phase is also important number of active classes 
those tasks are active. This determines number of conflictless schedules to process 
in CLS phase. 

As observed in examples scenarios data processing in all algorithm phases is 
realized more efficiently using GPU. This ratio is not always profitable in case, 
when also GPU data transfers are included. For example in CLS phase processing 
and data transfers by GPU is not efficient as CPU. The reason is transferring from 
GPU in CLS phase all calculated conflictless schedules, from which only one will 
be used. The software simulator transfers them only to print all determined 
conflictless schedules. 

5. Conclusions 

The created simulator software verifies the task coordination concept using 
modern GPU card and dedicated conflictless scheduling algorithm. It also enables 
the performance measurement of GPU processing in determining the conflictless 
schedules for various task processing environments with high contention of 
resources. Adjustment of conflictless scheduling algorithm to massively parallel 
processing by GPU and division to calculation stages assures the effective 
calculation of conflictless schedules. As show by the results of experiments using 
modern GPU conflictless schedules can be calculated in milliseconds using 
deterministic algorithm. If time resolution of task executions also is in milliseconds 
then calculations of conflictless schedules can be performed in advance. Then 
conflictless schedule can be determined before execution of active task finishes. 
This is because GPU card provides isolated computing environment, which 
resources are not used in task processing environments.  

The GPU efficiency in determination of conflictless schedules was confirmed 
in experiments, where computation results were obtained by GPU many times 
faster than by single core of CPU. Even including GPU data transfers the results of 
computation were better that using CPU. This allows to conclude, that novel 
approach of task coordination in access to global resources can be done efficiently 
using GPU conflictless scheduling. This approach can significantly facilitate 
developments of multitasking software in environments with high contention of 
resources. Software developer using conflictless scheduling is not obligated to use 
any other synchronization mechanism, because all resources conflicts will be 
eliminated automatically. There is also no possibility to the occurrence of task 
starvation in access to the global resources, because conflictless scheduling 
guarantees them access in a finite time. Even deadlock between tasks cannot occur 
due to wrong global resources allocation.  

The conflictless scheduling is designed to high contention environments with 
limited number of global resources, where set of all required resources is known 
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for each task before its execution begins. As established in computation 
experiments also task execution time should be longer that minimum limit to 
determine required conflictless schedule in advance. This minimum task duration 
limit is dependent on task environment parameters like number of global resources 
and number of task classes, also it is dependent on GPU specification. The GPU 
card equipped with more memory or more efficient processing elements will 
provide faster determination of adaptive conflictless schedule than presented in 
this paper. 
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