
INFORMATION
SYSTEMS IN

MANAGEMENT Information Systems in Management (2017) Vol. 6 (2) 143−153

THE GPU PERFORMANCE IN COORDINATION OF
PARALLEL TASKS IN ACCESS TO RESOURCE GROUPS

WITHOUT CONFLICTS

MATEUSZ SMOLIŃSKI

Institute of Information Technology, Lodz University of Technology

In high contention environments, with limited number of shared resources,
elimination of resource conflicts between tasks processed in parallel is required.
Execution of all tasks without resource conflicts can be achieved by preparing a
proper overall schedule for all of them. The effective calculation of conflict-free
execution plan for tasks provides the conflictless scheduling algorithm that is
dedicated to GPU massively parallel processing. The conflictless scheduling
algorithm base on rapid resource conflict detection to mutual exclusion of conflicted
tasks in access to global resources and is an alternative to other task synchronization
methods. This article presents the performance of modern GPU in calculations of
adaptive conflictless task schedule. The performance analysis also takes into account
all data transfers to and from the GPU memory in various phases of the conflictless
task scheduling algorithm.

Keywords: Resource conflict elimination, conflict free task execution, mutual
exclusion, deadlock avoidance, cooperative concurrency control, GPU massively
parallel processing, SIMD control SISD, GPGPU using OpenCL.

144

1. Introduction

Modern software development requires parallel task processing to provide
high performance. This follows directly from the construction of computers that
usually have multiple processing units. Building a multi-process application or
multithreaded program requires access control to global resources. To meet the
correctness requirements software developers use known concurrency solutions
that generally can be classified as competitive or cooperative concurrency [6,7].
Separation of concurrency problems and selection of synchronization mechanisms
with their appropriate usage in code is a source of problems in software
development. Additionally software developer has to choose fine or coarse grain
strategy for synchronization of access to global resources. Using multiple
synchronization mechanisms programmer can encounter task starvation or
deadlock problem. Together with an increasing number of tasks and global
resources increases the difficulty of preparing a correct concurrent program. This
problem especially concerns high contention environments i.e. DBMS, OLTP.

As alternative software developer can group resources according to their
usage in program (the division into tasks) and use conflictless scheduling to
coordinate tasks in access to global resources. The proposed model of parallel task
processing frees the programmer from controlling tasks access to global resources
to ensure mutual exclusion [4]. Using conflictless scheduling there is no need to
use other synchronization mechanism to manage allocation of global resources.
The conflictless scheduling can be applied in various task processing environments
and is fully responsible for tasks coordination to access groups of global resources
without any resource conflicts. Using conflictless scheduling also guarantees no
task starvation or deadlock in access to resources group required by task [5]. This
universal task coordination approach bases on rapid resource conflict detection and
preparation of schedule, which ensures parallel tasks execution without resources
conflicts. When one task finishes its execution then other conflicted tasks is started,
according to calculated earlier conflictless schedule. All calculations of conflictless
schedules need to be performed frequently and as quickly as possible, but not
engaging with the task resources.

Therefore an isolated computing environment was proposed, which is single
GPU card, to calculate conflictless schedule. The conflictless scheduling concept
with massively parallel GPU processing was presented on figure 1. Efficient
calculation of conflictless schedule with GPU requires dedicated data structures
and algorithm, which will be presented in next chapter. Also example of GPU
performance results, obtained using prepared author’s simulator software, will be
presented. Also analysis of those results will be discussed in the following sections.

145

Figure 1. The concept of task coordination in access to global resources

using conflictless scheduling

2. The conflictless scheduling

Application of conflictless task scheduling is possible only if all assumptions
about environment are fulfilled. The first assumption requires that task processing
environment has high contention of resources and the number of global resources is
static. High level of contention means that every task has at least one conflict with
others in access to limited number of global resources. Second assumption requires
that before task execution begin all its global resources has to be known. All
required by task resources has to be known in the moment, when task is created. It
is worth to mention, that the task execution times do not have to be known and
there are no task priorities.

Using binary resource identifiers tasks can be grouped in classes, where each
class represents tasks that require the same set of global resources with identical
pattern of access operations to each of them. In n-th point in time the task class
definition:

Cn
k = { ti: IRWi = IRWk ∧ IRi = IRk} (1)

146

where:
n – represents value of logical time,
∧ – represents logical conjunction,
IRWi – bits sequence that represents resources read or write by task ti,
IRi – bits sequence that represents resources only read by task ti

Each task class has own FIFO queue, which determines execution order for
waiting tasks from the same class. Requested task is allocated to queue by its
binary resource identifiers IRW and IR, which represents group of global resources
that are required by task with its access pattern (read only/write only/read and write
operations). Class task queues are emptied according to conflictless schedule
determined to n-th point in time. Each task has timestamp determined by logical
time, which represents moment of its appearance in task processing environment.
Therefore conflictless scheduling bases on correct managing of class queues, where
all tasks executed in parallel have no resource conflict. Each finish of active task
and change in class task queues determine next point in logical time. This also
means that all task executions with distinction to start and finish, have to be
reported (even task execution finish with error). This allows to control, which
waiting tasks can be executed, when last active conflicted task finish its execution.
Not knowing the finish time of active tasks we can wait for completion one of them
and then calculate suitable conflictless schedule, but this introduces additional
delays in task processing environments. Alternatively we can calculate in advance
many conflictless schedules, one for each active task. This approach requires
efficient processing environment for preparation many conflict less schedules, each
one Sn

k for every active task tk ∈ Rn and for fixed n-th point in time. To calculate
schedules effectively was chosen massively parallel processing environment
supported by modern GPU card. However development of dedicated GPU
algorithm to effective calculation of conflictless schedules requires fast resource
conflict detection between tasks. This problem was solved using two binary
resource identifiers IRW and IR, which are assigned to each task and represents
global resources that are used by this task operation with distinction read only
resources.

Binary resource identifiers allow rapid conflict detection between tasks,
details and examples are presented in other publications [4, 5]. The resource
conflict detection between two tasks belonging respectively to class Cnx and Cn

y can
be check by simple condition:

 (IRWx and IRWy) xor (IRx and IRy) ≠ 0 (2)

If above condition is satisfied, then exists at least one resource conflict
between task classes, determined by only three simple binary operators and one
comparison. This means that every two tasks, from those classes cannot be

147

executed in parallel, its execution order has to be determined by its logical time
values. If resource conflict is detected between tasks, then longer waiting task has
to be executed at first. This rule prevents tasks starvation and deadlock because
some task could get stuck in the class queue [5].

3. The GPU algorithm for determination conflictless schedule

Modern GPU processing environment is an example of SIMD (Single
Instruction stream Multiple Data streams) in Flynn’s taxonomy in contrast to task
processing environments that are classified as SISD (Single Instruction stream
Single Data stream) [2]. Single GPU card is isolated processing environment
because processing units can share GPU memory area (i.e. global memory), but
cannot directly access to memory located beyond GPU card. Designing of GPU
algorithm requires taking into account all memory transfers between host system
and GPU memory. To avoid unnecessary data transfers and repeated calculations
we propose some dedicated data structures: conflict array and conflict lists.
A conflict array stores information about resource conflicts between classes.
Whereas a conflict list is kept for each task class and stores all classes that are in
conflict with it. Task classes are identified on list by numbers and the conflict list
contains only selection of those conflicted classes, that queues are not empty. The
order of task classes in conflict list is fixed by timestamps of oldest task waiting in
class queue.

Developed algorithm has four phases - respectively denoted: SORT, CAT,
ACS, CLS, that are processed sequentially. Each phase has prepared computation
kernel dedicated to GPU processing. To determine a conflictless schedule, all
phases have to be processed sequentially, because the calculation results of the
previous stage are used in next computation phase. It should be noted that those
results between computation stages are stored in GPU memory, which minimize
unnecessary data transfer between host and GPU memory. Additionally due to the
features of the GPU memory (in particular of the restrictions on the local memory),
in each phase of presented algorithm, all computations have to be divided into
work-groups. All calculations in a single work-group are run in the same
computation unit, using its many processing elements. In each phase has to be
established a number of work-groups and its dimensions. In all phases of presented
algorithm all work groups have only one dimension, but its size varies.

In first computing SORT phase all task classes have to be ordered by
timestamps of oldest waiting task located in class queue. This first stage of
presented algorithm provides classes sorting in descending order determined by
logical time values. To solve this problem in massively parallel environment there
was used sorting by counting, because assigned to tasks logical time values are
unique [1]. Each GPU processing unit has to calculate positions in sorting order for

148

fixed number of classes, which is determined by work-group size. Calculated
positions are stored in local memory; this allows to significantly reduce number of
write operations in global GPU memory. Due to limitation of local memory size the
work group size was statically fixed to 16. Number of work-groups in first phase is
calculated as number of all classes with not empty queues divided by number of
work group size. Therefore in processing unit each one with 16 processing
elements has to count for fixed class number, how many classes have greater value
of logical time for oldest waiting task. All calculated counter values are stored in
local memory and sets class positions in sorting order. At the end of the first phase
numbers of sorted classes are stored in global memory, they will be used in next
computation phase of presented algorithm.

Second computing CAT stage is responsible for calculations of conflict class
array and lists of conflicted classes. Similarly, the number and size of work-groups
are identical as in previous phase. Resource conflicts between classes is determined
according to the relation (2), calculations are performed for all pairs of task classes.
Each processing element for fixed class verifies conflict with any other task class,
recording results in conflict array as boolean value and store all numbers of
conflicted class in conflict list. This conflict list is created individually for each
task class. Class order in resource conflict verification is fixed according to
previous computation phase. In example, for fixed class the conflicted class with
the oldest waiting task will have always first position on its list of conflicted
classes. It also should be noted that each class on conflict list is a candidate to
participate its conflictless schedule, when active task from fixed class finishes its
execution.

In third ACS phase a set of active classes is selected. This selection shows
classes that tasks are executed in parallel without conflicts in access to global
resources. Knowledge of active classes is required to establish the number of
conflictless schedules that will be calculated in next phase of presented algorithm.
Calculations of largest collection of active class are performed in single work-
group, which has maximum size determined by GPU specification (usually
work-group size is limited up to 1024). In this phase the data from conflict array
and conflict list are used, which improves computation.

The last computation CLS phase of proposed algorithm is responsible for
determination of conflictless schedules, which number is determined by cardinality
of active class set Rn. This fourth algorithm phase is the most important for
conflictless task scheduling, because for each active task it calculates the set of
classes which tasks can start execution in parallel immediately after this active task
finish. In CLS phase number of work-groups is equal with cardinality of active
class set, so every processing unit calculates at once only one conflictless schedule
for single active class. Size of work groups is determined dynamically according to
the maximum number of classes in conflict lists, prepared for the active classes.

149

Calculation of single conflictless schedule for one of active classes bases on
content its conflict list. According to list order among classes has to be selected this
subset, that have no resource conflict each other. Calculations of this subset is
realised by many processing elements that divide this work between each other.
This allows for efficient use of GPU resources to perform all operations in this
algorithm phase. In CLS computation phase was used optimisations in access to
memory areas. In each iteration of CLS phase class candidates to conflictless
schedule were temporary stored in local memory of processing units. After then
a subset of class candidates was written in global memory, so in each iteration
number of writes to global memory was minimised.

Presented phase decomposition of conflictless scheduling algorithm show
how features of massively processing GPU environment are adjusted to efficient
determination of conflictless schedule. How much presented deterministic
conflictless scheduling algorithm is dedicated to modern GPU, it will be shown in
next chapter. This algorithm was implemented using OpenCL standard in software
simulator of task processing environment, which using modern GPU card can
calculate conflictless schedule adapted to state of task processing environment with
high contention of global resources [3]. Prepared software simulator allows for
define various task classes environment and for each of them can perform all
phases of presented algorithm. Additionally simulator software measures time of
each phase computation using GPU and CPU, which allows comparing
performances in calculations of conflictless schedule in both computing sources.
The measured results of computation, for example scenario of task processing
environment, are presented in next section.

4. The calculation performance of conflictless schedules

The created simulator software will be used to present results of computation
adaptive conflictless schedule in various task processing environments. This
simulator implements conflictless scheduling algorithm presented in previous
chapter. All calculation results were made in GNU/Linux operating system from
CentOS 7.2 distribution with kernel version 3.10.0-327.36.3.el7.x86_64 using two
computing sources: GPU and CPU. The computer specification includes Intel Core
i5-2400 with 32 GB of RAM. The GPU used in computation is NVidia GTX 980
Titan with 2816 processing elements and 6 GB of GDDR5 memory with OpenCL
version 1.2 and drivers from CUDA software in version 7.5.30. The GPU
specification determines limits of task classes and global resources in
environments. In the presented configuration the number of classes is up to 16368
and number of global resources is limited to 32768.

150

The computation performance of adaptive conflictless schedule will be
presented for sample task processing environments with high contention of
resources. Each testing scenario includes other task processing environments,
which has fixed number of task classes and their conflict dependencies, also
number of global resources that are used by tasks is fixed for each scenario.
Performance results presented for each testing scenario will include total time of
calculation conflictless schedule using only CPU and GPU. Separately computation
times are presented for each phase of conflictless scheduling algorithm,
additionally times of data transfers between GPU and host computer memory are
shown in each algorithm phase. This allows to reliable compare the performance
calculations of conflictless schedules using massively parallel GPU processing and
sequential processing with single core of CPU.

The simulator software create all data for selected scenario defined by number
of task classes and number of global resources, it assumes that in all tasks classes
are waiting tasks and there are resource conflicts between them. In all scenarios
each task belongs to only one class and has to use many global resources that
generate resource conflicts between them. All binary resource identifiers for classes
and timestamps for oldest tasks located in class queues are prepared by
simulator software.

The first example of scenario has 5000 task classes and 64 global resources.
The level of conflicts between those classes is 4.6%, number of classes that tasks
are active is 32. Therefore in this scenario 32 conflictless schedules will be
calculated using CPU and GPU. The computation performance for first scenario
with timing results of all phases of conflictless scheduling algorithm is presented
in Table 1.

Table 2. Performance results for conflictless scheduling calculated with CPU and GPU for

scenario with 5000 task classes and 64 resources

 GPU transfer
time (µs)

GPU processing
time (µs)

GPU transfer and
processing time (µs)

CPU processing
time (µs)

SORT 199 32 231 24647
CAT 458 421 879 80051
ACS 10 38 48 209
CLS 902 16 918 108
total 1569 507 2076 105015

Results from Table 1 show that in total GPU processing of 32 conflictless

schedules is over 200 times faster than processing with CPU. In all algorithm
phases this data processing time for GPU is better than using one core CPU.
Including data transfer to and from GPU memory calculations of conflictless
schedules are in total 50 times faster than using CPU.

151

Table 2. Performance results for conflictless scheduling calculated with CPU and GPU for
scenario with 16368 task classes and 64 resources

 GPU transfer
time (µs)

GPU processing
time (µs)

GPU transfer and
processing time (µs)

CPU processing
time (µs)

SORT 241 146 387 755985
CAT 2623 2174 4797 112396
ACS 11 40 51 694
CLS 1510 17 1527 577
total 4385 2377 6762 869652

Second task processing environment has 16368 task classes and 64 global

resources. Also in second scenario level of conflict between classes and number of
active classes is the same as in first scenario. The performance results in
calculation of conflictless schedules for second scenario are presented in Table 2.
Comparison of CPU and GPU processing time in second scenario shows that in
total GPU is 365 times faster than CPU. Including GPU data transfers its
performance dominance is 128 times faster. This scenario demonstrate also that
increasing number of task classes causes observable rise time in SORT and CAT
phases of conflictless scheduling algorithm, because there are dependent on the
number of task classes. Processing in ACS and CLS phase of algorithm is
dependent on number of active classes.

The third scenario represents task processing environment that has 16368 task
classes and 1024 global resources. Number of active classes is 202 and the level of
conflicts between task classes is 1.2%. The computation performance for third
scenario with timing results of all phases of conflictless scheduling algorithm is
presented in Table 3.

Table 3. Performance results for conflictless scheduling calculated with CPU and GPU for

scenario with 16368 task classes and 1024 resources

 GPU transfer
time (µs)

GPU processing
time (µs)

GPU transfer and
processing time (µs)

CPU processing
time (µs)

SORT 216 154 434 751790
CAT 3661 2086 5747 13463
ACS 12 40 52 4670
CLS 5310 175 5485 3230
total 9263 2455 11718 773153

In third example scenario GPU processing was 314 times faster than CPU and

including data transfers it was 66 times faster. In comparison to previous scenarios
number of global resources is 16 times greater, what caused respectively longer
resource binary identifiers. This especially affects duration of CAT and CLS phases
of algorithm. Generally greater number of global resources extends calculations of

152

conflictless schedules. For CLS phase is also important number of active classes
those tasks are active. This determines number of conflictless schedules to process
in CLS phase.

As observed in examples scenarios data processing in all algorithm phases is
realized more efficiently using GPU. This ratio is not always profitable in case,
when also GPU data transfers are included. For example in CLS phase processing
and data transfers by GPU is not efficient as CPU. The reason is transferring from
GPU in CLS phase all calculated conflictless schedules, from which only one will
be used. The software simulator transfers them only to print all determined
conflictless schedules.

5. Conclusions

The created simulator software verifies the task coordination concept using
modern GPU card and dedicated conflictless scheduling algorithm. It also enables
the performance measurement of GPU processing in determining the conflictless
schedules for various task processing environments with high contention of
resources. Adjustment of conflictless scheduling algorithm to massively parallel
processing by GPU and division to calculation stages assures the effective
calculation of conflictless schedules. As show by the results of experiments using
modern GPU conflictless schedules can be calculated in milliseconds using
deterministic algorithm. If time resolution of task executions also is in milliseconds
then calculations of conflictless schedules can be performed in advance. Then
conflictless schedule can be determined before execution of active task finishes.
This is because GPU card provides isolated computing environment, which
resources are not used in task processing environments.

The GPU efficiency in determination of conflictless schedules was confirmed
in experiments, where computation results were obtained by GPU many times
faster than by single core of CPU. Even including GPU data transfers the results of
computation were better that using CPU. This allows to conclude, that novel
approach of task coordination in access to global resources can be done efficiently
using GPU conflictless scheduling. This approach can significantly facilitate
developments of multitasking software in environments with high contention of
resources. Software developer using conflictless scheduling is not obligated to use
any other synchronization mechanism, because all resources conflicts will be
eliminated automatically. There is also no possibility to the occurrence of task
starvation in access to the global resources, because conflictless scheduling
guarantees them access in a finite time. Even deadlock between tasks cannot occur
due to wrong global resources allocation.

The conflictless scheduling is designed to high contention environments with
limited number of global resources, where set of all required resources is known

153

for each task before its execution begins. As established in computation
experiments also task execution time should be longer that minimum limit to
determine required conflictless schedule in advance. This minimum task duration
limit is dependent on task environment parameters like number of global resources
and number of task classes, also it is dependent on GPU specification. The GPU
card equipped with more memory or more efficient processing elements will
provide faster determination of adaptive conflictless schedule than presented in
this paper.

REFERENCES

[1] Amato N., Ravishankar Iyer R., Sundaresan S., and Wu. Y. (1998) A Comparison of
Parallel Sorting Algorithms on Different Architectures. Technical Report. Texas A &
M University, College Station, TX, USA.

[2] Flynn M.J., Rudd R. W. (1996) Parallel architectures, ACM Computing Surveys,
Volume 28, Issue 1, 67–70

[3] Martineau M., McIntosh-Smith S., Boulton M., Gaudin W. (2016). An Evaluation of
Emerging Many-Core Parallel Programming Models. In Proceedings of the 7th
International Workshop on Programming Models and Applications for Multicores and
Manycores (PMAM'16), Pavan Balaji and Kai-Cheung Leung (Eds.). ACM, New
York, NY, USA

[4] Smoliński, M. (2016) Coordination of Parallel Tasks in Access to Resource Groups by
Adaptive Conflictless Scheduling. Beyond Databases, Architectures and Structures.
Advanced Technologies for Data Mining and Knowledge Discovery

[5] Smoliński, M. (2016) Elimination of task starvation in conflictless scheduling
concept. Information Systems in Management Vol. 5, No. 2, 237–247

[6] Stallings W. (2015) Operating systems, Internals and Design Principles. Pearson
Education, 8th edition

[7] Tanenbaum, A., Bos H. (2014) Modern operating systems. Prentice Hall, 4th edition

