PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the Machinability of Glass, Carbon and Aramid Fiber Reinforced Plastics in Drilling and Secondary Drilling Operations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Composite materials are usually subjected to machining processes, especially when they are used to for the aviation and automotive industries. Apart from side surface milling and face milling, these materials are subjected to machining to make holes and countersinking holes, cuts of complex shape, recesses, and grooves. One of the many machining methods for polymer composites is drilling. The accuracy of a drilled hole is very important for operational reasons, because it has impact on the quality and strength of the connection between polymer composite elements and structural elements. This paper shows the results of a study investigating the impact of drilling and secondary drilling as well as technological drilling parameters on the maximum feed force, surface roughness and hole quality. Holes were drilled in glass, carbon and aramid fiber reinforced plastics. The study has shown that the highest maximum feed force occurs when drilling in aramid fiber reinforced plastic. The lowest values of the maximum feed force were obtained when drilling in glass fiber reinforced plastic. The influence of drilling parameters on surface roughness during drilling holes in composite materials was also determined. The highest values of roughness parameters were obtained in the machining of aramid fiber reinforced plastic, while the lowest roughness parameters were obtained on the hole surface when drilling in carbon fiber reinforced plastic.
Twórcy
  • Department of Production Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Chang C.S. Turning of glass–fiber reinforced plastics materials with chamfered main cutting edge carbide tools. Journal of Materials Processing Technology. 2006; 180: 117–129.
  • 2. Kini M.V., Chincholkar A.M. Effect of machining parameters on surface roughness and material removal rate in finish turning of ±30° glass fibre reinforced polymer pipes. Materials & Design. 2010; 31: 3590–3598.
  • 3. Liu D., Tang Y., Cong W.L. A review of mechanical drilling for composite laminates. Composite Structures. 2012; 94: 1265–1279.
  • 4. Rahme P., Landon Y., Lachaud F., Piquet R., Lagarrigue P. Delamination-free drilling of thick composite materials. Composites Part A: Applied Science and Manufacturing. 2015; 72: 148–159.
  • 5. Bayraktar S., Turgut Y. Investigation of the cutting forces and surface roughness in milling carbon-fiber-reinforced polymer composite material. Mater Tehnol. 2016; 50: 591–600.
  • 6. Sorrentino L., Turchetta S. Cutting Forces in Milling of Carbon Fibre Reinforced Plastics. International Journal of Manufacturing Engineering. 2014; 1–8.
  • 7. Kecik K., Ciecielag K., Zaleski K. Damage detection by recurrence and entropy methods on the basis of time series measured during composite milling. Int J Adv Manuf Technol. 2020; 111: 549–563.
  • 8. Ciecieląg K., Kecik K., Zaleski K. 2020. Defects detection from time series of cutting force in composite milling process by recurrence analysis. Journal of Reinforced Plastics and Composites. 39; 890–901.
  • 9. Ciecieląg K., Zaleski K. Comparative study in the passive force and cutting torque in the milling process of polymer matrix composites and aluminum alloys. Advances in Science and Technology Research Journal. 2013; 7: 6–12.
  • 10. Zagórski I., Kulisz M., Kłonica M., Matuszak J. Trochoidal Milling and Neural Networks Simulation of Magnesium Alloys. Materials. 2019; 12: 2070.
  • 11. Kulisz M., Zagórski I., Matuszak J., Kłonica M. Properties of the Surface Layer After Trochoidal Milling and Brushing: Experimental Study and Artificial Neural Network Simulation. Applied Sciences. 2019; 10: 75.
  • 12. Żak K. Cutting Mechanics and Surface Finish for Turning with Differently Shaped CBN Tools. Archive of Mechanical Engineering. 2017; 64: 347–357.
  • 13. Teti R. Machining of Composite Materials. CIRP Annals. 2002; 51: 611–634.
  • 14. Lin S.C., Chen I.K. Drilling carbon fiber-reinforced composite material at high speed. Wear. 1996; 194: 156–162.
  • 15. Abrão A.M., Faria P.E., Rubio J.C.C., Reis P., Davim J.P. Drilling of fiber reinforced plastics: A review. Journal of Materials Processing Technology. 2007; 186: 1–7.
  • 16. Doluk E., Rudawska A., Kuczmaszewski J., Pieśko P. Milling of an Al/CFRP Sandwich Construction with Non-Coated and TiAlN-Coated Tools. Materials. 2020; 13: 3763.
  • 17. Doluk E., Rudawska A., Kuczmaszewski J., Miturska-Barańska I. Surface Roughness after Milling of the Al/CFRP Stacks with a Diamond Tool. Materials. 2021; 14: 6835.
  • 18. Shyha I.S., Aspinwall D.K., Soo S.L., Bradley S. Drill geometry and operating effects when cutting small diameter holes in CFRP. International Journal of Machine Tools and Manufacture. 2009; 49: 1008–1014.
  • 19. Davim J.P., Reis P. Drilling carbon fiber reinforced plastics manufactured by autoclave—experimental and statistical study. Materials & Design. 2003; 24: 315–324.
  • 20. Davim J.P., Reis P. Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Composite Structures. 2003; 59: 481–487.
  • 21. Palanikumar K. Experimental investigation and optimisation in drilling of GFRP composites. Measurement. 2011; 44: 2138–2148.
  • 22. Ciecieląg K., Skoczylas A., Matuszak J., Zaleski K., Kęcik K. Defect detection and localization in polymer composites based on drilling force signal by recurrence analysis. Measurement. 2021; 186: 110126.
  • 23. Eneyew E.D., Ramulu M. Experimental study of surface quality and damage when drilling unidirectional CFRP composites. Journal of Materials Research and Technology. 2014; 3: 354–362.
  • 24. Murphy C., Byrne G., Gilchrist M.D. The performance of coated tungsten carbide drills when machining carbon fibre-reinforced epoxy composite materials. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2002; 216: 143–152.
  • 25. Chen W.C. Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates. International Journal of Machine Tools and Manufacture. 1997; 37: 1097–1108.
  • 26. Brinksmeier E., Fangmann S., Rentsch R. Drilling of composites and resulting surface integrity. CIRP Annals. 2011; 60: 57–60.
  • 27. Lee S.C., Jeong S.T., Park J.N., Kim S.J., Cho G.J. Study on Drilling Characteristics and Mechanical Properties of CFRP Composites. Acta Mech Solida Sin. 2008; 21: 364–368.
  • 28. Stone R., Krishnamurthy K. A neural network thrust force controller to minimize delamination during drilling of graphite-epoxy laminates. International Journal of Machine Tools and Manufacture. 1996; 36: 985–1003.
  • 29. Krishnamurthy R., Ramkumar J., Aravindan S., Malhotra S.K. An enhancement of the machining performance of GFRP by oscillatory assisted drilling. The International Journal of Advanced Manufacturing Technology. 2004; 23: 240–244.
  • 30. Ramkumar J., Malhotra S.K., Krishnamurthy R. Effect of workpiece vibration on drilling of GFRP laminates. Journal of Materials Processing Technology. 2004; 152: 329–332.
  • 31. Wang X., Wang L.J., Tao J.P. Investigation on thrust in vibration drilling of fiber-reinforced plastics. Journal of Materials Processing Technology. 2004; 148: 239–244.
  • 32. Fernandes M., Cook C. Drilling of carbon composites using a one shot drill bit. Part I: Five stage representation of drilling and factors affecting maximum force and torque. International Journal of Machine Tools and Manufacture. 2006; 46: 70–75.
  • 33. Fernandes M., Cook C. Drilling of carbon composites using a one shot drill bit. Part II: empirical modeling of maximum thrust force. International Journal of Machine Tools and Manufacture. 2006; 46: 76–79.
  • 34. Phadnis V.A., Makhdum F., Roy A., Silberschmidt V.V. Drilling in carbon/epoxy composites: Experimental investigations and finite element implementation. Composites Part A: Applied Science and Manufacturing. 2013; 47: 41–51.
  • 35. Ciecieląg K. Effect of Composite Material Fixing on Hole Accuracy and Defects During Drilling. Adv Sci Technol Res. 2021; J(15): 54–65.
  • 36. Rajakumar I.P.T., Hariharan P., Srikanth I. A study on monitoring the drilling of polymeric nanocomposite laminates using acoustic emission. Journal of Composite Materials. 2013; 47: 1773–1784.
  • 37. Tsao C.C., Hocheng H. Parametric study on thrust force of core drill. Journal of Materials Processing Technology. 2007; 192–193: 37–40.
  • 38. Abhishek K., Datta S., Mahapatra S.S. Optimization of thrust, torque, entry, and exist delamination factor during drilling of CFRP composites. Int J Adv Manuf Technol. 2015; 76: 401–416.
  • 39. Abrão A.M., Rubio J.C.C., Faria P.E., Davim J.P. The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic composite. Materials & Design. 2008; 29: 508–513.
  • 40. Zarif Karimi N., Heidary H., Minak G., Ahmadi M. Effect of the drilling process on the compression behavior of glass/epoxy laminates. Composite Structures. 2013; 98: 59–68.
  • 41. Singh I., Bhatnagar N., Viswanath P. 2008. Drilling of uni-directional glass fiber reinforced plastics: Experimental and finite element study. Materials & Design. 29; 546–553.
  • 42. Khashaba U.A., El-Sonbaty I.A., Selmy A.I., Megahed A.A. Machinability analysis in drilling woven GFR/epoxy composites: Part II – Effect of drill wear. Composites Part A: Applied Science and Manufacturing. 2010; 41: 1130–1137.
  • 43. Rangaswamy T., Nagaraja R. Machining of Kevlar Aramid fiber reinforced polymer composite laminates (K-1226) using solid carbide step drill K34. Surathkal, India. 2020; 050014.
  • 44. Bhattacharyya D., Horrigan D.P.W. A study of hole drilling in Kevlar composites. Composites Science and Technology. 1998; 58: 267–283.
  • 45. Shuaib A.N., Al-Sulaiman F.A., Hamid F. Machinability of Kevlar® 49 Composite Laminates While Using Standard TiN Coated HSS Drills. Machining Science and Technology. 2004; 8: 449–467.
  • 46. Liu S., Yang T., Liu C., Du Y., Gong W. Investigation of hole quality during drilling of KFRP based on the interaction between collars and cutter. Int J Adv Manuf Technol. 2018; 95: 4101–4116.
  • 47. Wang F.J., Zhao M., Yan J.B., Qiu S., Liu X., Zhang B.Y. Investigation of Damage Reduction When Dry-Drilling Aramid Fiber-Reinforced Plastics Based on a Three-Point Step Drill. Materials. 2020; 13: 54–57.
  • 48. Kłonica M., Kuczmaszewski J. Modification of Ti6Al4V Titanium Alloy Surface Layer in the Ozone Atmosphere. Materials. 2019; 12: 2113.
  • 49. Maruda R.W., Legutko S., Krolczyk J.B., Wojciechowski S., Kot W. The Influence of the Application of EP Additive in the Minimum Quantity Cooling Lubrication Method on the Tool Wear and Surface Roughness in the Process of Turning 316L Steel. In: Hloch S, Klichová D, Krolczyk GM, Chattopadhyaya S, Ruppenthalová L (eds) Advances in Manufacturing Engineering and Materials. Springer International Publishing, Cham; 2019; 254–263.
  • 50. Legutko S., Zak K., Kudlacek J. Characteristics of geometric structure of the surface after grinding. MATEC Web Conf 2017; 94: 02007.
  • 51. Grzesik W., Żak K. Comparison of precision hard turning and grinding operations in terms of the topographic analysis of machined surfaces. IJ-SURFSE. 2016; 10: 179.
  • 52. Wiertel M., Zaleski K., Gorgol M., Skoczylas A., Zaleski R. Impact of Impulse Shot Peening Parameters on Properties of Stainless Steel Surface. Acta Phys Pol A. 2017; 132: 1611–1616.
  • 53. Skoczylas A., Zaleski K. Effect of Centrifugal Shot Peening on the Surface Properties of Laser-Cut C45 Steel Parts. Materials. 2019; 12: 3635.
  • 54. Kuczmaszewski J., Zaleski K., Matuszak J., Mądry J. Testing Geometric Precision and Surface Roughness of Titanium Alloy Thin-Walled Elements Processed with Milling. In: Diering M, Wieczorowski M, Brown CA (eds) Advances in Manufacturing II. Springer International Publishing, Cham; 2019; 95–106.
  • 55. Matuszak J., Klonica M., Zagorski I. Effect of Brushing Conditions on Axial Forces in Ceramic Brush Surface Treatment. In: 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, Torino, Italy 2019, 644–648.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6275e7ea-3153-4d41-a52b-485cb214fb14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.