PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Wear Resistance of Functional Composite Polymeric Materials and Durability of Metal-Polymer Bearings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method of tribological testing of models with such sliding friction using a simple pin-on-disc mechanism was presented. Wear resistance indicators of unfilled polyamides PA6, PA66 and composites based on polyamide PA6+30GF, PA6+30CF, PA6+MoS2, PA6 and oil coupled with steel C45 are determined. They, as polymeric materials with the property of self-lubrication, they are often used in metal-polymer dry friction bearings. Based on them, wear resistance characteristics of these polymeric materials at sliding friction are established. They are used as basic parameters for developed by authors mathematical model of material wear kinetics at sliding friction and analytical research method of metal-polymer sliding bearings research. For comparative assessment of wear resistance of the investigated polymeric materials, their wear resistance diagrams are constructed. Thef show the functional dependence of wear resistance on specific friction forces. It is proved that the wear resistance of materials nonlinearly depends on specific pressure, i.e., the specific friction forces. Qualitative and quantitative influence of the type and structure of fillers (which improve the tribological properties of the base polymer PA6) on their wear resistance has been established. The forecast estimation of durability of metal polymer bearings made of the specified polyamides by the author's method of calculation taking into account their various wear resistance, characteristics of elasticity and conditions of dry friction is carried out. The research results are presented graphically, which facilitates their understanding and analyses.
Twórcy
  • Aerospace Faculty, National Aviation University, Ukraine Liubomyra Huzara Ave, 1, Kyiv, 03058 Ukraine
  • Mechanical Faculty, Lublin Technical University, ul. Nadbystrzycka 38D, 20–618 Lublin, Poland
  • Aerospace Faculty, National Aviation University, Ukraine Liubomyra Huzara Ave, 1, Kyiv, 03058 Ukraine
  • Aerospace Faculty, National Aviation University, Ukraine Liubomyra Huzara Ave, 1, Kyiv, 03058 Ukraine
Bibliografia
  • 1. International Standard ISO 7148–2. Plain bearings – testing of the tribological behaviour of bearings matrials. Part 2. Testing of polymer – based bearing materials. 10.01.2012.
  • 2. Mens, J.W.M., de Gee, A.W.J.: Friction and wear behaviour of 18 polymers in contact with steel in environments of air and water, Wear 1991; 149: 255–268. https://doi.org/10.1016/0043–1648(91)90378–8.
  • 3. Palabiyik, M. and Bahadur, S.: Tribological studies of polyamide 6 and high-density рolyethylene blends filled with PTFE and copper oxide and reinforced with short glass fibers, Wear 2002; 253: 369–376. https://doi.org/10.1016/S0043–1648(02)00144–8.
  • 4. Seabra, C.L., Babtista, M.A. Tribological behaviour of food grade polymers against stainless steel in dry sliding and with sugar, Wear 2002; 253: 394–402. https://doi.org/10.1016/S0043–1648(02)00138–2.
  • 5. Zsidai, L., De Baets, P., Samyn, P., Kalacska, G., Van Peteghem, A.P., Van Parrys, F.: The tribological behaviour of engineering plastics during siliding friction investigated with small scale specimens, Wear 2002; 53: 673–688. https://doi.org/10.1016/S0043–1648(02)00149–7.
  • 6. Kalácska, G. An engineering approach to dry friction behaviour of numerous engineering plastics with respect to the mechanical properties, eXPRESS Polymer Letters 2013; 7(2): 199–210.
  • 7. http://dx.doi.org/10.3144/expresspolymlett.2013.18
  • 8. De Almeida Rosa, A.G., Moreto, J.A., Manfrinato, M.D., Rossino, L.S. Study on friction and wear behavior of SAE 1045 steel, reinforced nylon 6.6 and NBR rubber used in clutch disks, Mat. Res., 2014; 17(6): 1397–1403. https://doi.org/10.1590/1516–1439.282714.
  • 9. Mithun, V., Kulkarni, K., Elagovan, K., Hemachandra, R. and Basappa, S.J.: Tribological bechaviours of ABS and PA6 polymer metal sliding combinations under dry friction, waterabsorbed and elektroplated conditions, Journal of Engineering Science and Technology, 2016; 11(1): 68–84.
  • 10. Kulkarni, M.V., Elangovan, K., Reddy Hemachandra, K. and Basappa, S.J.: Tribological behaviours of АВs and PA6 polymer metal sliding combinations under dry friction, water absorbed and electroplated conditions, Journal of Engineering Science and Technology, 2016; 11(1): 68–84.
  • 11. https://doi.org/10.1016/j.wear.2017.01.118.
  • 12. Pogaˇcnik, A., Kupec, A., Kalin, M. Tribological properties of polyamide (PA6) in self-mated contacts and against steel as a stationary and moving body. Wear 2017; 378–379: 17–26.
  • 13. Jozwik, J., Dziedzic, K., Barszcz, M. and Pashechko, M.: Analysis and Comparative Assessment of Basic Tribological Properties of Selected Polymer Composites, Materials 2020; 13(1): 75.
  • 14. https://doi.org/10.3390/ma13010075.
  • 15. Feyzullahoglu, E., Saffak, Z. The tribological behavior of different engineering plastics under dry friction conditions. Materials and Design 2008; 29: 205–211.
  • 16. https://doi.org/0.1016/J.MATDES.2006.11.012.
  • 17. Ünlü, B.S., Atik, E., Köksal, S. Tribological properties of polymer-based journal bearings, Materials and Design 2009; 30(7): 2618–2622.
  • 18. https://doi.org/10.1016/j.matdes.2008.11.018.
  • 19. Demirci, M.T., Düzcükoglu H. Wear bechawiors of PTFE reinforced PA66, Journal bearings, International Scientific Conference, 19–20 November, GABROVO 2010; 249–253.
  • 20. Mastan, V., Raja Kiran Kumar, V., Kiran Kumar, Ch. Study of Friction and Wear on Journal Bearings, International Refereed Journal of Engineering and Science 2012; 1(4): 63–70.
  • 21. Myshkin, N.K., Kim, C.K., Petrokovets, M.I. Introduction to tribology. Seoul: Cheong Moon Gak Publishers, 1997.
  • 22. Myshkin, N.K., Petrokovets M.I., Kovalev A.V. Tribology of polymers: Adhesion, friction, wear, and mass-transfer, Tribology International 2005; 38: 910–921.
  • 23. https://doi.org/10.1016/j.triboint.2005.07.016.
  • 24. Myshkin, N., Kovalev, A., Spaltman, D., et al. Contact mechanics and tribology of polymer composites, J Appl Polym Sci. 2014; 131: 39870. https://doi.org/10.1002/app.39870.
  • 25. Myshkin, N., Kovalev, A. Adhesion and surface forces in polymer tribology–A review, Friction 2018; 6: 143–155. https://doi.org/10.1007/s40544–018–0203–0.
  • 26. Chernets, M.V., Andreikiv, O.E., Liebiedieva, N.M., Zhydyk, V.B. A model for evaluation of wear and durability of plain bearing with small non-circularity of its contours, Materials Science 2009; 2: 279–290,. http://dx.doi.org/10.1007/s11003–009–9176–5.
  • 27. Chernets, M.V. Tribocontact problems for cylindrical joints with technological roundness. Ed Lublin Polytechnic, Lublin 2013.
  • 28. Chernets, M.V., Shil’ko, S.V., Pashechko, M.I., and Barshch, M.: Wear resistance of glass- and carbon-filled polyamide composites for metal-polymer gears, Journal of Friction and Wear 2018; 39(5): 361–364.
  • 29. https://doi.org/10.3103/S1068366618050069.
  • 30. Chernets, M., Chernets, J., Kindrachuk, M., Kornienko A. Methodology of calculation of metalpolymer sliding bearings for contact strength, durability and wear, Tribology in Industry 2020; 42(4): 572–581. https://doi.org/10.24874/ti.900.06.20.10.
  • 31. Rezaei, A., Ost, W., Van Paepegem, W., De Baets, P., Degrieck J. Experimental study and numerical simulation of the large-scale testing of polymericcomposite journal bearings: Three-dimensional and dynamic modelling, Wear 2011; 270: 431–438. http://dx.doi.org/10.1007/s11249–009–9518–3.
  • 32. Rezaei, A. et al. Adaptive finite element simulation of wear evolution in radial sliding bearing, Wear 2012; 296(1–2): 660–671,. http://dx.doi.org/10.1016/j. wear.2012.08.013.
  • 33. Wielieba, W. Bezobsługowe łożyska ślizgowe z polimerów termoplastycznych. Wyd. Politechniki Wrocławskiej, Wrocław, 2013.
  • 34. Wojciechowski Ł., Wieczorowski M., Mathia T.G. Transition from the boundary lubrication to scuffing – The role of metallic surfaces morphology. Wear 2017; 392–393: 39–49. https://doi.org/10.1016/j.wear.2017.09.011.
  • 35. Pawlus P., Zelasko W, Reizer R., Wieczorowski M. Calculation of plasticity index of two-process surfaces. The Journal of Engineering Tribology 2017; 231(5). https://doi.org/10.1177/1350650116664826.
  • 36. Bloom P.D., Baikerikar K.G., Anderegg J. W., Sheares V.V. Fabrication and wear resistance Paul D of Al–Cu–Fe quasicrystal-epoxy composite materials. Materials Science and Engineering 2003; 360(1–2): 46–57. https://doi.org/10.1016/S0921–5093(03)00415–5.
  • 37. Zaghloul M.M.Y., Steel K., Veidt M. Wear behaviour of polymeric materials reinforced with manmade fibres: A comprehensive review about fibre volume fraction influence on wear performance. Journal of Reinforced Plastics and Composites 2022; 41: 5–6.
  • 38. https://doi.org/10.1177/07316844211051733.
Uwagi
1) Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). 2) Błędna numeracja bibliografii w artykule. Następujace pozycje powinny tworzyć jeden opis: poz. 6 i 7; poz. 10 i 11; poz. 13 i 14 ; poz. 15 i 16; poz. 17 i 18; poz. 22 i 23; poz. 28 i 29; poz. 37 i 38.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62753a47-0184-4381-a15f-b035dd0c2df5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.