PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing the Width and Compressive Strength of Artificial Protective Pillar in the Mining of Medium-Thick Coal Seams in Quang Ninh Using the Numerical Model

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Optymalizacja szerokości i wytrzymałości na ściskanie sztucznego filaru ochronnego w eksploatacji średniogrubych pokładów węgla w Quang Ninh z wykorzystaniem modelu numerycznego
Konferencja
POL-VIET 2023 — the 7th International Conference POL-VIET
Języki publikacji
EN
Abstrakty
EN
Currently, in many countries with the coal mining industry, the technology of using artificial pillars has been successfully applied to replace coal pillars to protect the entry gate road, thereby reducing the rate of resource loss, as well as the cost of entry gate road, and mining costs. However, in order to optimize the required width and compressive strength of artificial pillars with thickness, slope angle and mining depth, more detailed studies are required for each specific geological condition. This research uses Phase 2 numerical simulation software to analyze the stability of artificial protective pillar of the roadway prepared in the mining of medium-thick coal seams in the Quang Ninh coal region (Vietnam). The research results show that the relationship between the width of the artificial pillar and the slope angle follows the rule of a linear function. The size of the artificial protection pillar increases according to the mining depth. When the mining depth is 350m, the size of the pillar changes from 1.0 ÷ 2.4m, and to 1.4 ÷ 2, 8m at a depth of 500m. When the slope angle increases, the required pillar width also increases. That is due to the fact that at a large slope angle, the pressure acting on the pillar is not at the center, but deflects to the side adjacent to the entry gate road that needs to be protected, the compression force is not distributed evenly. The required compressive strength of the artificial pillar varies according to the condition of the slope angle, when the seam slopes 10°, the required compressive strength is from 8 to 12 MPa, when the slope angle increases to 20°, the required compressive strength of the pier increases to 18 ÷ 28 Mpa, but when the slope angle increases to 35°, the required compressive strength of the pillar tends to decrease to 16 ÷ 17 MPa. Thus, when operating in the corresponding conditions, it is necessary to choose the size and required compressive strength of the artificial pillar to ensure the working capacity of the pillar.
Rocznik
Strony
143--154
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr., zdj.
Twórcy
  • Faculty of Mining, Hanoi Univesity of Mining and Geology, Hanoi, Vietnam
  • Faculty of Mining, Ha noi Univesity of Mining and Geology, Hanoi, Vietnam
Bibliografia
  • 1. Cuong, D.V., Thanh, V.T., Tuan, A.N., 2019. Study on the possibility of using artificial pillars to replace the protection coal pillar of the preparationroadways during the mining process at underground coal mines in Quang Ninh region, Vietnam. Journal of the Polish Mineral Engineering Society, http://doi.org/10.29227/IM-2019-02-73.
  • 2. HU, B.N., 2012. Backfill Mining Technology and Development Tendency in China Coal Mine. Coal Science and Technology. Vol. 40 No. 11. DOI: 10.13199/j.cst.2012.11.7.hubn.006.
  • 3. Song, Z.Q, Cui, Z.D., Xia. H.C., Tang, J.Q., Wen, Z.J., 2010. The fundamental theoretical and engineering research on the green safe no coal pillar mining model mainly using coal gangue backfill. Journal of China Coal Society, No.05, Vol.35. DOI:10.13225/j.cnki.jccs.2010.05.017
  • 4. Dinh, V.C., Nguyen, A.T., Tran, V.T., Nguyen, H.Ng., Duong, D.H., 2021. Applying Artificial Pillar to Replace the Coal Pillar Protecting Roadway to Increase Production Efficiency and Sustainable Development in the Vietnamese Coal Industry. Journal of the Polish Mineral Engineering Society, No.2, Vol.1, 2021, http://doi.org/10.29227/IM-2021-02-56.
  • 5. Zhou, Y. J., Xu, X. D., Li, X. T., Li, M., and Yang, Y. G.,2018. Study on catastrophe instability of support system in gypsum goaf based on energy dissipation theory. Adv. Civ. Eng. 2018, 1–9. doi:10.1155/2018/4293584.
  • 6. Ma, C. Q., Li, H. Z., and Zhang, P. P., 2017. Subsidence prediction method of solid backfilling mining with different filling ratios under thick unconsolidated layers. Arab. J. Geosci. 10 (23), 511–512. doi:10.1007/s12517-017-3303-7
  • 7. Sun, Q., Zhang, J. X., Zhou, N. 2018. Study and discussion of short-strip coal pillar recovery with cemented paste backfill. Int. J. Rock Mech. Min. Sci. 104, 147–155. doi:10.1016/j.ijrmms.2018.01.031
  • 8. Chi, Y., C., Sheng, G. C., Chang, C. Zh., Shu, Y. D., Jiang, L., Yang, L., 2023. Research on cemented artificial pillars to replace protective inter-block coal pillars and stope failure laws. Original research article, Front. Earth Sci., 18 January 2023, Sec. Structural Geology and Tectonics, Volume 10 - 2022. https://doi.org/10.3389/feart.2022.1039478.
  • 9. Niełacny P., 2009, Dobór technologii utrzymywania wyrobisk przyścianowych w jednostronnym otoczeniu zrobów na podstawie pomiarów przemieszczeń górotworu, Praca doktorska, Akademia Górniczo-Hutnicza, Krakowie, Poland.
  • 10. Rak Z., 2017. Dobre praktyki w utrzymywaniu wyrobiska w jednostronnym otoczeniu zrobami zawałowymi. Zeszyty Naukowe, Instytut Gospodarki Surowcami Mineralnymi Polskiej Akademii Nauk, Poland, nr 101, pp. 117–132.
  • 11. Reed, G., Mctyer, K., Frith, R., 2017, “An assessment of coal pillar system stability criteria based on a mechanistic evaluation of the interaction between coal pillars and the overburden”, International Journal of Mining Science and Technology 27 (2017), pp. 9-15.
  • 12. Simon, H. P., Muhammad, A. I., Ganda, M. S., Ridho, K. W., Irwandy, A., Made, A. R.,2019. New coal pillar strength formula considering the effect of interface friction. International journal of Rock Mechanics and Mining Sciencess 123 (2019) 104102.
  • 13. Bieniewski, Z. T., 1992. A method revisited: Coal pilllar strength formula based on field investigations. Proceeding of the Workshop on coal pillar mechanics and design, Bu mines, pp. 158-165. (https://www.arcc.osmre.gov/resources/impoundments/BoM-IC-9315-Proceedingsof the Workshopon Coal Pillar Mechanicsand Design-Bieniawski1992.pdf).
  • 14. Kang, Zh., Zhong, Q. G., Xiao,D. Z., Ze, M.Z., Xiao, J. W., 2013. Study on Stability of Metal Mine Overlying Strata for Artificial Pillar Support. IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013. ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814. www.IJCSI.org
  • 15. Bui, M.T., Le, T.D., Liu. C.Y., Pham, V.C., 2020. Study on controlling parameters and technological optimization of Strip Longwall Top Coal Caving in thick coal seams. Inżynieria Mineralna – Journal of the Polish Mineral Engineering Society. 2020;46(2): 105-113.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62730681-24b8-4df1-a9d2-91dee02ecd25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.