PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rapid Synthesis of Gold Nano-Particles Using Pulse Waved Potential in a Non-Aqueous Electrolyte

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rapid synthesis of gold nanoparticles (AuNPs) by pulsed electrodeposition was investigated in the non-aqueous electrolyte, 1-ethyl-3-methyl-imidazoliumbis(trifluoro- methanesulfonyl)imide ([EMIM]TFSI) with gold trichloride (AuCl3). To aid the dissolution of AuCl3, 1-ethyl-3-methyl-imidazolium chloride ([EMIM]Cl) was used as a supporting electrolyte in [EMIM]TFSI. Cyclicvoltammetry experiments revealed a cathodic reaction corresponding to the reduction of gold at −0.4 V vs. Pt-QRE. To confirmthe electrodeposition process, potentiostatic electrodeposition of gold in the non-aqueous electrolyte was conducted at −0.4 V for 1 h at room temperature. To synthesize AuNPs, pulsed electrodeposition was conducted with controlled duty factor, pulse duration, and overpotential. The composition, particle-size distribution, and morphology of the AuNPs were confirmed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The electrodeposited AuNPs were uniformly distributed on the platinum electrode surface without any impurities arising from the non-aqueous electrolyte. The size distribution of AuNPs could be also controlled by the electrodeposition conditions.
Słowa kluczowe
Twórcy
autor
  • School of Advanced Materials Science and Engineering, Kumoh National Institute of Technology, 1 Daehak-Ro, Gumi, Gyungbuk, 39177 Korea (Republic of)
autor
  • School of Advanced Materials Science and Engineering, Kumoh National Institute of Technology, 1 Daehak-Ro, Gumi, Gyungbuk, 39177 Korea (Republic of)
autor
  • School of Advanced Materials Science and Engineering, Kumoh National Institute of Technology, 1 Daehak-Ro, Gumi, Gyungbuk, 39177 Korea (Republic of)
Bibliografia
  • [1] S.I. Yang, Physics & High Technology 15, 31 (2006).
  • [2] E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, Small. 1, 325 (2005).
  • [3] P. Ghosh, G. Han, M. De, C.K. Kim, V.M. Rotello, Adv. Drug Deliver. Re. 60, 1307 (2008).
  • [4] P. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett. 96, 113002 (2006).
  • [5] X. Huang, M.A. El-Sayed, Journal of Advanced Research 1, 13 (2010).
  • [6] M.-C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).
  • [7] M. Haruta, Cat. Tech. 6, 102 (2002).
  • [8] H.N. Kim, Thesis of PhD, Inha University, (2009).
  • [9] Y. Pan, S. Neuss, A. Leifert, et al., Small. 3, 1941 (2007).
  • [10] A.N. Shipway, E. Katz, I. Willner, Chem. Phys. Chem. 1, 18 (2000).
  • [11] J. Turkevitch, P.C. Stevenson, J. Hillier, Discuss. Faraday. Soc. 11, 55 (1951).
  • [12] V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky, N.O. Kalinina, Acta Nature 6, 35 (2014).
  • [13] S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Research in Pharmaceutical Sciences 9, 385 (2014).
  • [14] Y. Lu, K. Korf, Y. Kambe, Z. Tu, L.A. Archer, Angewandte Chemie53, 488 (2014).
  • [15] J.O. Lee, G.W. Park, J.S. Park, Y.J. Cho, C.K. Lee, International J. of Precision Engineering and Manufacturing 16, 1220 (2015).
  • [16] S. Zhang, N. Sun, X. He, X. Lu, and X. Zhang, J. Phys. Chem. Ref. Data 35, 1475 (2006).
  • [17] J.S. Park, Y.J. Jung, P. Kusumah, J.Y. Lee, K.J. Kwon, C.K Lee, Int. J. Mol. Sci. 15, 15320 (2014).
  • [18] J. Liu, C. Zhong, X. Du, J. Liu, et al, Electrochimica Acta 100, 164 (2013).
  • [19] B. Hvolbaek, T.V.W. Janssens, B.S. Clausen, H. Falsig, C.H. Christensen, J.K. Norskov, Nano Today 2, 14 (2007).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-626e657b-089e-41f5-a7de-7896cac06375
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.