PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of the concentration of steel fibres on the properties of industrial floors

Identyfikatory
Warianty tytułu
PL
Wpływ zawartości włókien stalowych na właściwości posadzek przemysłowych
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of a series of experiments on samples made of steel fibre reinforced concrete. The investigated samples were made with different concentrations of steel fibres ranging from 20.0 to 32.5 kg/m3. Twenty-one cubic samples (15 x 15 x 15 cm) and fourteen cuboid samples (15 x 15 x 60 cm) were used for this investigation. The article focusses on the effect of the concentration of steel fibres on the properties of industrial floors. For this purpose, both destructive and non-destructive methods were used and compared. As a result of this study, it has been proved that compressive and flexural tensile strength are lower with increasing air content and decreasing density of concrete. Moreover, it was found that there is a correlation between ultrasonic pulse velocity and rebound hammer results which together can be used to estimate the compressive strength of steel fibre reinforced concrete.
PL
W niniejszym artykule przedstawiono wyniki serii eksperymentów wykonanych na próbkach z betonu zbrojonego włóknami stalowymi. Badane próbki zbrojone były różną zawartością włókien stalowych od 20.0 do 32.5 kg/m3. Do badań użyto 21 sześciennych (15 x 15 x 15 cm) i 14 prostopadłościennych (15 x 15 x 60 cm) próbek betonowych. W artykule skupiono się na zbadaniu wpływu zawartości włókien stalowych na właściwości posadzek przemysłowych. Do badań zastosowano i porównano metody niszczące oraz nieniszczące. W rezultacie udowodniono, że wytrzymałość na ściskanie i rozciąganie przy zginaniu zmniejsza się wraz ze wzrostem zawartości powietrza i malejącą gęstością betonu. Ponadto stwierdzono, że istnieje korelacja między wynikami ultradźwiękowymi i sklerometrycznymi, które mogą być wykorzystane do oszacowania wytrzymałości na ściskanie betonu zbrojonego włóknami stalowymi.
Rocznik
Strony
115--132
Opis fizyczny
Bibliogr. 31 poz., il., wz., wykr., tab.
Twórcy
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology
Bibliografia
  • [1] Johnston C.D., Fiber-reinforced cements and concretes, CRC Press, 2014.
  • [2] Balaguru P.N., Shah S.P., Fiber-reinforced cement composites, 1992.
  • [3] Agunwamba J.C., Adagba T., A comparative analysis of the rebound hammer and ultrasonic pulse velocity in testing concrete, Nigerian Journal of Technology 2012, 31(1), 31–39.
  • [4] Ongpeng J.M., Oreta A.W., Hirose S., Characterization of Damage Using Ultrasonic Testing on Different Types of Concrete, Materials Evaluation 2018, 76(11), 1532–1541.
  • [5] Zhao Q., Yu J., Geng G., Jiang J., Liu X., Effect of fiber types on creep behavior of concrete, Construction and Building Materials 2016, 105, 416–422.
  • [6] Kırgız M.S., Fresh and hardened properties of green binder concrete containing marble powder and brick powder, European Journal of Environmental and Civil Engineering 2016, 20(1), 64–101.
  • [7] Lee J.H., Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete, Composite Structures 2017, 168, 216–225.
  • [8] Ongpeng J., Oreta A., Hirose S., Investigation on the sensitivity of ultrasonic test applied to reinforced concrete beams using neural network, Applied Sciences 2018, 8(3).
  • [9] Wafa F.F., Ashour S.A., Mechanical properties of high-strength fiber reinforced concrete, Materials Journal 1992, 89(5), 449–455.
  • [10] Martí J.V., Yepes V., González-Vidosa F., Memetic algorithm approach to designing precastprestressed concrete road bridges with steel fiber reinforcement, Journal of Structural Engineering 2014, 141(2), 04014114.
  • [11] Meda A., Plizzari G.A., New design approach for steel fiber-reinforced concrete slabs-onground based on fracture mechanics, Structural Journal 2004, 101(3), 298–303.
  • [12] Balaguru P., Foden A., Properties of fiber reinforced structural lightweight concrete, Structural Journal 1996, 93(1), 62–78.
  • [13] Sorelli L.G., Meda A., Plizzari G.A., Steel fiber concrete slabs on ground: a structural matter, ACI Structural Journal 2006, 103(4).
  • [14] Caratelli A., Meda A., Rinaldi Z., Romualdi P., Structural behaviour of precast tunnel segments in fiber reinforced concrete, Tunnelling and Underground Space Technology 2011, 26(2), 284–291.
  • [15] Kang S.T., Lee Y., Park Y.D., Kim J.K., Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber, Composite Structures 2010, 92(1), 61–71.
  • [16] Ostrowski K., Sadowski Ł., Stefaniuk D., Wałach D., Gawenda T., Oleksik K., Usydus I., The Effect of the Morphology of Coarse Aggregate on the Properties of Self-Compacting High-Performance Fibre-Reinforced Concrete, Materials 2018, 11(8).
  • [17] Stawiski B., The heterogeneity of mechanical properties of concrete in formed constructions horizontally, Archives of Civil and Mechanical Engineering 2012, 12(1), 90–94.
  • [18] Ostrowski K., The influence of CFRP sheets on the strength of short columns produced from normal strength concrete and fibre reinforced concrete, Technical Transactions 2-B/2016, 145–156.
  • [19] Samarin A., Meynink P., Use of combined ultrasonic and rebound hammer method for determining strength of concrete structural members, Concrete International 1981, 3(03), 25–29.
  • [20] Abdulmajeed R., Hasan N., Amen D., Comparative Analysis of the Rebound Hammer and Ultrasonic Pulse Velocity in Testing Concrete with Multi-Variation Equation, International Review 2016, 7(6), 196–200.
  • [21] Di Prisco M., Felicetti R., Plizzari G.A. (eds.), PRO 39: 6th International RILEM Symposium on Fibre-Reinforced Concretes (FRC)-BEFIB 2014, vol. 1, RILEM Publications 2004.
  • [22] BS EN 206. (2016). BS EN 206:2016, Concrete – Specification, performance, production and conformity (includes Amendment :2016).
  • [23] Concrete C., Statements B. (2003). ASTM C 231:2003, Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method. American Society for Testing and Materials. M, 04.
  • [24] ASTM. (1997). C1018, Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading). ASTM International, 04 (October), 7.
  • [25] ASTM. (2016), Standard Test Method for Pulse Velocity Through Concrete. ASTM C597-16. ASTM International.
  • [26] ASTM C805-02. (2002). 1. ASTM C 805, Standard Test Method for Rebound Number of Hardened Concrete. ASTM, 2–4.
  • [27] ASTM C143/143M. (2010). Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM C143, (1), 1–4.
  • [28] BS EN 12504-2. (2012). BS EN 12504-2:2012, Testing concrete in structures – Part 2: Non-destructive testing – Determination of rebound number.
  • [29] BS EN 12350-2. (2009). BS EN 12350-2:2009, Testing fresh concrete. Part 2: Slump Test.
  • [30] BS EN 12350-7. (2009). BS EN 12350-7:2009, Testing fresh concrete. Part 7: Air Content – Pressure methods.
  • [31] ASTM. (2002). ASTM C78/C78M – 02, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, 1–3.
Uwagi
EN
Section "Civil Engineering"
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62676a1a-3b2a-470d-88c7-7eefe60622a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.