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Differential games are a combination of game theory and optimum control methods. Their solutions are based on 
Bellman's principle of optimality. In this paper, the zero-sum differential game theory has been used for the purposes 
of controlling a mechatronic object: a single-link manipulator. In this case, analytical solutions are unavailable, thus 
approximate solutions were used. Two approximation methods were compared with the use of numerical simulations 
and selected quality indicators. The results confirm previous assumptions and the connection between the differential 
game theory and H  control problems.  
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1. Introduction 

 
 The differential game theory, combining game theory with optimum control theory, is a 
generalisation of the min-max optimisation problem. Solutions of differential games are based on Bellman's 
principle of optimality [1, 2]. 
 Differential games are a subset of dynamic games, in which the controlled object is described by 
differential equations. In the case of zero-sum differential games, one of the players minimises, and the other 
maximises the defined value function. The solution of a problem defined this way is a Nash saddle point [3], 
which is the solution of H  control problems. This fact links the differential game theory with the 
dissipative system theory [4, 5]. Analytical solutions of zero-sum differential games are only possible if the 
controlled object is linear, which was utilised, for example, in study [6]. In the nonlinear case, the solution of 
a zero-sum differential game is approximated using approximate dynamic programming methods [2, 7-9]. 
 The paper presents a single-link manipulator control algorithm [10]. An approximate solution was 
calculated with the selected zero-sum differential game solution approximation methods (i.e. [7, 11]) taken 
into account. The solutions obtained were compared using selected quality indicators. 
 
2. H∞ optimum control of a nonlinear object. Zero-sum differential games 
 
 The controlled object is defined [3, 5, 7] 
 
   ( ) ( ) ( )f g k  x x x u x d , (2.1) 
 
with an output 
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   z Cx  (2.2) 
 
where ( )f 0 0 , x  is a state dynamic object, C  is the output matrix, and , ,f g k  are non-linear functions.  
A value function in the following form was correlated with the controlled object (2.1) 
 

   ( ) ( ) [ ( ) ( ) ( ) ( ) ( ) ( )]
0 0

T T T
Vt t

V t t t t t t dt
 

     x s x x Qx u Ru d d  (2.3) 

 

where 0t  is the initial time,   is the gain related to H  control, while TQ C C  and R  are design matrices. 
The form of the value function (2.3) results from the dissipative system theory, as demonstrated in [4, 5]. 
Signals u  and d  are the control signal, which is the minimising player, and the maximising player signal, 
acting as disturbance, respectively. Output (2.2), designated z , determines the value function's value. 
 For the controlled object (2.1), 2L -gain can be specified: 

Theorem 1 [5]: In an infinite time horizon, the controlled object (2.1) has gain 2L  lower or equal to   if 
 

   
[ ( ) ( ) ( ) ( )]

( ) ( )

0

0

T T

t 2

T

t

t t t t dt

t t dt






 




x Qx u Ru

d d
, (2.4) 

 

H  control involves determining the lowest * 0   value such that for any  , the following inequality is 
true 
 

   *    (2.5) 
 

where *  is the gain determined for signals *u  and *d , which are optimal relative to the defined quality 
indicator in the form (2.3). 
 Based on [1, 5], determining gain 2L  for the controlled object (2.3) is equivalent to calculation of the 

optimum function V . Consequently, a H  control problem is equivalent to minimisation of the value function 

V . Such an approach reduces a 2L   stability problem to the zero-sum differential game theory.  
 
2.1. Zero-sum differential game  

  
 As shown in paper [3], differential game problems are defined as follows: the solution of a zero-sum 
differential game where the controlled object is defined by Eq.(2.1), the output Eq.(2.2), and the value 

function takes the form (2.3), are such signals *u  and *d , for which the following inequality is true 
 

        * * * *, , , , , ,V V V x u d x u d x u d . (2.6) 

 

 In other words, the solution of a zero-sum differential game is a pair of signals  * *,u d  which define 

a saddle point, referred to as a Nash saddle point [3]. A saddle point solution is the optimum game strategy 
for both players. 
 Zero-sum differential game problems can be expressed using the Hamilton-Jacobi-Isaacs (HJI) 
equation, i.e.,  
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    
( ) ( )

min max ( , , ) ( ) ( ) ( )V
t t

dV
0 f g k

d
     
 u d

s x u d x x u x d
x

, (2.7) 

 
or 
 

    
( ) ( )

min max ( , , ) ( ) ( ) ( )V
t t

dV
0 f g k

d
     
 d u

s x u d x x u x d
x

. (2.8) 

 
 The HJI equation defines a sufficient condition for an optimum. As a consequence of Eqs (2.7) and 

(2.8), the saddle point  * *,u d  is defined as 

  

   
*

* ( )
( ) ( )1 T1 dV
t g

2 d
 

x
u R x

x
, (2.9) 

 
and 
 

  
*

* ( )
( ) ( )T

2

1 dV
t k

d2



x

d x
x

 (2.10) 

where *( )V x  designates the optimum function value. 
 It has been widely indicated [1, 2, 7] that solving zero-sum differential games using Eqs (2.9) and 
(2.10) is very difficult due to the value function gradient being unknown. Analytical solutions are possible in 
linear cases. Zero-sum differential game solutions are then reduced to the Riccati solution, as demonstrated 
for a discrete problem in paper [6]. 
 In non-linear cases, a frequently utilised solution is to approximate the value function using adaptive 
structures, such as neural networks [2, 7–9]. 
 
3. Approximate solutions  
 
3.1. Actor-critic structure 
 
 As shown in paper [7], zero-sum differential games can be solved using sequential policy iteration 
(PI) algorithms. Their drawback is the need to execute internal loops in which the maximising player's signal 
is determined, while maintaining a constant control signal (the minimising player). Only when the internal 
loop is complete is the next control signal value determined. The necessity to operate online enforces the use 
of other approximation methods, e.g., the widely utilised author-critic structures [11].  
 As discussed in paper [7], value function assessment utilising the critic's neural network (NN) has 
the following form 
 

   ˆ ˆ ( )T
1V W ψ x   (3.1) 

 

where ˆ
1W  is the NN weight approximate, while ( ) [ ( ), ( ),..., ( )]T1 2 N   x x x xψ  is the basic function 

vector. The value function reaches the lowest value when the Hamiltonian 
 

    ( )ˆ ˆ( , , ) ( ) ( ) ( )T T T T
1 1

d
H , f g k

d
        
 

x
x W u d x Qx u Ru d d W x x u x d

x

ψ
,  (3.2) 
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calculated from Eq.(2.7), equals zero. The task of the NN approximating value function is to minimise the 
error defined as 
 

   21
E H

2
 .  (3.3) 

 

 Equation (3.3) forms the basis for determining the weight adaptation rule, which takes the form of a 
modified Levenberg-Marquardt method [7], i.e., 
 

   
 

ˆ ˆT T T T1
1 1 1T

1 11

           
W W x Qx u Ru d d


  (3.4) 

 

where  ( ) ( ) ( ) ( )1 f g k   x x x u x dψ , 
( )

( )
d

d
 

x
x

x

ψ
ψ  and   is the learning coefficient.  

 Using value function gradient approximations, relations (2.9) and (2.10) are expressed as 
 

   ˆˆ( ) ( ) ( )1 T
1

1
t g

2
  u R x x Wψ ,  (3.5) 

and 

   ˆ ˆ( ) ( ) ( )T
12

1
t k

2
 


d x x Wψ .  (3.6) 

  
 Given Eqs (3.5) and (3.6), the weight adaptation rule (3.4) of the critic's NN takes the following form 
 

   
 

ˆ ˆ ˆˆ ˆ ˆ ˆ
ˆ ˆ

T T T T1
1 1T

1 11

           
W W x Qx u Ru d d


  (3.7) 

 

where   ˆˆˆ ( ) ( ) ( ) ( )1 f g k     x x x u x dψ . 

 
3.2. Recurring least squares (RLS) method 
 
 Another approach to zero-sum differential games is the use of the iterative least squares method in 
the problem identification area [12]. The Hamiltonian's form (3.2) indicates that it is a linear function of the 
critic's weights. Therefore, application of the least squares method is viable.  
 The value function is defined as 
 

   ˆ ˆ ( )T
2V W ψ x .  (3.8) 

 
 In accordance with study [12], the critic's NN weight adaptation process was executed using the 
iterative normalised least squares method, where the weight adaptation rule has the following form 
 

    ˆ ˆ, ,T 1
2 2T

1 1

H ,
1


 

  
W G x W u d

G


.  (3.9) 

 
 The , 0    indicators present in Eq.(3.9) are design parameters, while G  is a symmetrical matrix 
calculated from the following equation 
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T

1 1
T
1 11

 
 

  
G G G

G
 ,  (3.10) 

 
while   ( ) ,G G0 0   G I . 

 
4. Single-link manipulator control 
 
 The single-link manipulator, whose scheme is presented in Fig.1, remains in rotating motion around 
the z  axis which passes through point A. Figure 1 indicates the manipulator motion equation, which has the 
following form 
 

   ( ) cos( ) ( )A
1

J u t Gl d t
2

          (4.1) 

 
where   is the robot's rotation angle,   is the movement resistance term (   is constant), u  is the driving 

moment which constitutes control, d  is the disturbance moment, mG mg  is the weight of the arm with m  

mass ( mg  - gravitational constant), l  is the arm length, and AJ  is the arm's moment of interia relative to the 
rotation axis passing through point A. 
 

 
 

Fig.1. Single-link manipulator scheme. 
 
 Based on the parametric identification process [13], Eq.(4.1) is given the following form  
 
   cos( )1 2 3a a a g u d         (4.2) 
 
where the obtained values of the ia  coefficients are provided in Tab.1  
 
Tab.1. Parameter values ia . 
 

1a  0.1523 

2a  0.4648 

3a  0.0063 

 
 In the following part of the study, differential game theory was utilised to control tracking movement 
of the manipulator. To this end, control error was defined 
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   de    ,  (4.3) 
and 
   de       (4.4) 
 
where d , d  are defined kinematic parameters of the arm's movement. A generalised error  
 
   s e e    (4.5) 
 
where   is the design coefficient, was assumed. After differentiating the Eq.(4.5) and using Eqs (4.2) - (4.4), 
the following was obtained 
 

    , , ,2
d d

1 1 1

a 1 1
s s N e e u d

a a a
          (4.6) 

 

where d  is the signal generated by the maximising player, who serves as disturbance, and ( , , )d dN e e    is 
a function defined as 
 

   ( , , ) ( ) cos( )32
d d d d d

1 1

aa
N e e e g e e

a a
                .  (4.7) 

 

 Equation (4.7) is a description of the robot arm's movement dynamics in a generalised error space. 
Assuming ,1 2a a  and a3, parameter values as given in Tab.1 and assuming the defined trajectory of the 

selected point B , as well as its velocity Bv


 the tracking control problem using a zero-sum differential game 
was defined. When the inverse kinematics problem was solved, angular coordinates of the defined motion 
trajectory were obtained, and the trajectory's kinematic parameters could be defined as 
 

   

cos( ),

sin( ),

cos( )

d

d

2
d

A t

A t

A t

  

    

    





   (4.8)  

 
where A and   are selected constant. 
 
4.1. Actor-critic structure simulations 
 
 Considering the form of the value function (2.3), selecting A 10  , 3 , .0 51  , R=0.2, Q=0.2, 

100  , 1  , ( ) /0 10   , ( )0 0  , and considering the dynamics description, i.e., Eq.(4.6), a numerical 
simulation of tracking control was performed using an author-critic structure related to the zero-sum differential 
game approximation. The simulation was performed using the Matlab/Simulink suite using Euler's integration 
method with a .h 0 001  step. Selecting the vector of the basic functions describing NN neurons 
 

   ( ) , ,
T2 2 2s e e   x ψ ,  (4.9) 

 

whose task is to approximate the value function, and assuming  ˆ ( ) . , . , .
T

1 0 0 18 4 8 1 2W , a numerical 

simulation of a differential game and H  control was conducted 
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Fig.2.  The actor-critic algotithm result: (a) behaviour of û  which is the minimising player; (b) behaviour of 

maximising player signal d̂  and disturbance step d ; (c) behaviour of tracking control error e  and 

e ; (d) behaviour of weight  ˆ
1W . 

 
 Figure 2a presents the control behaviour for worst case disturbance (Fig.2b) of the Nash saddle point 
solution. This process is executed for ,t 0 20 . The obtained representation error for the defined trajectory 

during the execution of the differential game is presented in Fig.2c. Execution of the differential game 
procedure requires approximating the value function using NN in an actor-critic structure by an appropriate NN 
weight adaptation process. The obtained weights are presented in Fig.2d. 
 The discussed zero-sum differential game results were used to solve an H  control problem. In order to 

verify this control, step disturbance with [ ]d 7 Nm  amplitude was introduced in the second part of the 

simulation (for t 20 ). They can be interpreted as the manipulator moving additional weight. 
 While the disturbance was present, increased control signal amplitude was noted, as shown in Fig.2a. 
The error and its derivative, obtained during that time, are presented in Fig.2c. 
 

 
 

Fig.3. Behaviours of the gain   and * . 
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 As shown in Fig.3, conditions (4.5) is met, meaning that the designed system is not susceptible to 
interference occurring during the execution of the control process. This means that the designed system is 
stable in the sense 2L  [5]. It is an input-output stability, which is a generalisation of the linear system 
stability method. 
 Since the value function can be approximated using a normalised RLS algorithm, the subsequent part 
of this paper presents the zero-sum differential game and H  control results obtained using this approach. 
 
4.2. RLS algorithm simulations 
 
 In this section, the critic's neural network weight learning algorithm was executed using the 
procedure described in section 3.2. With the dynamic equation of the manipulator arm's movement in the 
generalised tracking error space (Eq.(4.6)) known, the RLS method was used to obtain the approximate 
solution of a zero-sum differential game. Keeping the parameter values from section 4.1 and selecting 

( ) 3x30 22G I , . ,0 35  , . ,0 01   ˆ ( ) , . , .
T

2 0 4 0 08 1 6W  and using the weight adaptation rule ˆ
2W  defined 

in Eq.(4.4), a numerical simulation of a differential game and H  control was performed. 
 

 
 

Fig.4.  The normalised RLS algotithm result: (a) behaviour of û  which is the minimising player; (b) 

behaviour of maximising player signal d̂  and disturbance step d ; (c) behaviour of tracking control 

error e  and e ; (d) behaviour of weight ˆ
2W . 

 
 Similarly to the previous simulation, a differential game was simulated using a normalised RLS 
algorithm during the first phase, i.e., for ,t 0 20 . Figure 4a presents the control signal û , which is a 

response to the worst case disturbance shown in Fig.4b. During the differential game, tracking errors e  and 
e  are limited, as shown in Fig.4c. Additionally, NN weights (Fig.4d) are adapted using Eq.(3.9) in this 
simulation phase.  
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 In the second simulation phase, i.e., during time ,t 20 40 , the determined NN weights ˆ
2W , which 

approximate the value function gradient, were used to solve the H  problem. Similarly to section 4.1, step 

disturbance [ ]d 7 Nm  was added to the system. The control response û  to the additional interference is 

shown in Fig.4a. Tracking errors e  and e  during the presence of the discrete interference are shown in 
Fig.4c.  
 

 
 

Fig.5. Behaviours of the gain  and *  for normalised RLS algorithm. 
 

 The theory indicates that H  control is stable when *   . Figure 5 indicates that *   , which 

means that the designed control system is stable in the sense 2L .  

 
5. Comparison of results 
 
 In order to compare the zero-sum differential game approximate solution methods presented in this 
paper, a number of quality indicators were introduced. Given that a numerical integration procedure was 
utilised in the simulation, the presented methods can be assessed using similar quality indicators as in paper 
[14]: 
 module of the maximum rotation angle maxe  and angular velocity maxe  tracking error, 

 mean square error root of the rotation angle 
n

2
k

k 1

1
e

n 

    and angular velocity 
n

2
k

k 1

1
e

n 

     tracking 

error, 
 maximum value of the generalised tracking error maxs , 

 mean square error root of the generalised tracking error 
n

2
k

k 1

1
s

n 

     

where n  is the sample number 
 The values of the selected quality indicators for section 4.1 (Levenberg-Marquardt algorithm) and 
4.2 (RLS algorithm) simulations across time ,t 20 40  are summarised in Tab.2 and visualised in the bar 

chart (Fig.6a).  
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Table 2. Values of the selected quality indicators. 
 
 

maxe  maxe      maxs    

LM algorithm 0.0038 0.0068 0.0371 0.0107 0.0303 0.0394 
RLS algorithm 0.0060 0.0064 0.0803 0.0109 0.0257 0.0833 

 

 

Fig.6.  (a) Comparing selected quality indicators and (b) comparing generalised errors s  for methods 
presented in sections 4.1 and 4.2. 

 
 Considering the selected quality indicators, it can be concluded that the control quality measured 
using the selected quality indicators is higher when using the procedure described in section 4.2. This 
observation is confirmed by Fig.6b, where generalised errors s  for methods presented in sections 4.1 ( LMs ) 

and 4.2 ( RLSs ) are summarised. 

 
6. Summary 
 
 The paper presents an example of differential game theory application in non-linear object control, 

which is equivalent to solving an H  control problem. Furthermore, it is known that meeting the *    

condition means that the designed system is stable in the sense 2L [5]. It is an input-output stability, which is 
a generalisation of the linear system stability method.  
 The paper compares two methods of approximating the HJI equation. In both cases, H  control 

verification confirmed that the *    condition was met. Additionally, considering the quality indicators 
calculated in section 5, it was concluded that the method presented in section 4.1 is slightly better in 
minimising the tracking error.  
 Computer simulations led to obtaining a stable solution in spite of varying operating conditions of 
the analysed single-link manipulator. These results confirm the theoretical assumptions concerning the HJI 
equation solution stability [7].  
 
Nomenclature 
 
 A ,  – selected constant 
 ia  – constant parameter values 

 C  – output matrix 
 d  – maximising player 

 *d  – optimal maximising player 
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 d̂  – approximation maximising player 
 e  – control error 
 maxe  – module of the maximum rotation angle  

 , ,f g k  – nonlinear functions 

 mG mg  – weight of the arm with m  mass ( mg  - gravitational constant) 

 h  – integration step 
 AJ  – arm's moment of interia  

  l  – arm length 
 s  – generalized control error 
 maxs  – maximum value of the generalised tracking error 

 u – minimising player 

 *u  – optimal minimising player 
 û  – approximation minimising player 
 ,Q R  – design matrices 
 V  – value function 
 V̂  – approximation value function 

 ˆ
iW  – NN weight approximate 

 x  – state dynamic object 
  , d  – robot's rotation angle 

   – gain related to H  control 

   – mean square error root of the rotation angle 
   – learning coefficient 
   – movement resistance term (   is constant) 
   – design coefficient 
 ,  , G  – design parameters 

   – mean square error root of the generalised tracking error 



( ) ( ), ( ),

,..., ( )

1 2

T
N

  



x x x

x

ψ
 – basic function vector 
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