PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemistry of renewables for sustainable industry

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Chemia surowców odnawialnych dla zmodernizowanego przemysłu
Języki publikacji
EN
Abstrakty
EN
Chemistry as a basic science and chemical industry as the principal provider of innovative materials for practically all sectors of contemporary economy, are in the center of unprecedented and revolutionary technical and social changes. These changes are necessary for mitigating climate disturbances and environmental deterioration, which threaten the future of humanity. In reference to recent international initiatives, like the UN Sustainable Development Goals, which underline the need for global economic changes based on recovery and circularity principles, we offer some comments on area of research and development. They are concerned with a mandatory transition from un-renewable fossil-based industries, like the petrochemical one, to new sources of energy and carbon-rich materials generated by novel processes compatible with zero GHG emission prospects. Our discussion is focused on biomass as a universal feedstock capable of satisfying global needs for energy as well as chemical materials from commodity to specialty. Secondly, principle drivers of innovation in the fields of new chemical reactions and processes, like catalysis are discussed. The discussion includes a recent strive for new functional materials in reference to all levels of their structural organization, from single atoms and surface phenomena, through nano-constructs and mesopore composites, to macro-molecular and supra-molecular aggregates. Finally, the need for a further development of innovation and feasibility assessment methods, based on green chemistry principles is mentioned. It is a condition for an efficient cooperation in biomass related international R&D projects, which have to be based on the harmonization of unified evaluation principles.
PL
Chemia, jedna z podstawowych nauk przyrodniczych oraz przemysł chemiczny, który zapewnia innowacyjne i nowoczesne materiały dla praktycznie wszystkich sektorów współczesnej gospodarki, znalazły się w centrum unikalnych i rewolucyjnych zmian ekonomicznych. Zmiany te, dotyczą nie tylko techniki i technologii, ale także mają znaczące skutki społeczne. Są one niezbędne w celu zminimalizowania dalszego pogarszania się klimatu oraz stanu naturalnego środowiska – zjawisk, które zagrażają przyszłości ludzkiego gatunku. Ostatnie inicjatywy, takie jak „UN Sustainable Development Goals”, kładą nacisk na potrzebę globalnych przemian gospodarczych opartych o zasady regeneracji i cykliczności. W odniesieniu do tych inicjatyw i rozwoju znanych nam dziedzin chemii omawiamy obiecujące kierunki badań i rozwoju (R&D) związane z krótkoterminowymi cyklami organicznych związków węgla w kontekście transformacji od surowców nieodnawialnych (paliwa kopalne), do ekonomii nowych źródeł energii oraz materiałów organicznych, wytworzonych przez nowe procesy zgodne z wymaganiem zerowej emisji gazów cieplarnianych. Nasza dyskusja kładzie nacisk na biomasę jako uniwersalny surowiec, zaspokajający globalne potrzeby energetyczne oraz będący źródłem wszelkiego rodzaju produktów chemicznych. Ponadto, artykuł zawiera rozważania na temat podstawowych czynników innowacyjnych w zakresie nowych procesów i reakcji chemicznych, włącznie z nowymi katalizatorami. Do omawianych problemów i zjawisk należą próby wytwarzania nowych materiałów z uwzględnieniem różnych poziomów organizacji strukturalnej od pojedynczych atomów, poprzez nanokonstrukty i mezokompozyty aż do agregatów makro i supra-molekularnych. W końcu, niezbędność dalszego postepu innowacyjnego oraz metod oceny wykonalności, wynikające z reguł zielonej chemii są także wspomniane. Jest to warunek konieczny do osiągnięcia skutecznej współpracy w zakresie miedzynarodowych projektow badawczych (R&D), które muszą bazować na harmonizacji ujednoliconych zasad oceny.
Rocznik
Tom
Strony
5--16
Opis fizyczny
Bibliogr. 125 poz., rys.
Twórcy
  • Professor Emeritus, Independent scientific consultant
  • Wilkes University, Dept. Pharmaceutical Sciences, Wilkes-Barre, PA 18766, USA; Chemventive, LLC, Chadds Ford, PA, 19317, USA
Bibliografia
  • [1] U Thant (1970) Human environment and world order, International Journal of Environmental Studies, 1:1-4, 13-17, DOI: 10.1080/00207237008709390.
  • [2] G.F. Kennan, To prevent a world wasteland, Boston College Envtl. Aff. L. Rev., 1971, 1,191-203 , https://lawdigitalcommons.bc.edu/ealr/vol1/iss1/9.
  • [3] G.H. Brundtand, (Ed.), Our Common Future, Oxford University Press, New York, 1987 (Report of the WCED).
  • [4] F. Dodds, M. Strauss, M. Strong, Only one Earth : the long road via Rio to sustainable development, Routledge, Taylor & Francis Group, London and New York 2012.
  • [5] C.S. Pedersen, The UN Sustainable Development Goals (SDGs) are a great gift to business!, Procedia CIRP, 2018, 69:21-24.
  • [6] United Nations. The UN Sustainable Development Goals. United Nations, New York, 2015 http://www.un.org/sustainabledevelopment/summit/, Accessed: Oct. 10, 2021.
  • [7] United Nations. Transforming our world: The 2030 Agenda for Sustainable Development. A/RES/70/1. 2019, 36 p. http://sustainabledevelopment.un.org. (accessed 9 September 2021).
  • [8] W.L. Filho, L.L. Brandli, A.L. Salvia, L. Rayman-Bacchus, J. Platje, COVID-19 and the UN Sustainable Development Goals: Threat to Solidarity or an Opportunity? Sustainability 2020, 12, 5343.
  • [9] Transitioning to strong partnerships for the sustainable development goals (G von Schnurbein, Ed.) MDPI, Basel 2020.
  • [10] V. Prieto-Sandoval, C. Jaca, M. Ormazabal, Towards a consensus on the circular economy, J. Clean Prod., 2018, 179, 605-615.
  • [11] A.G. Olabi, Circular economy and renewable energy. Energy, 2019,181, 450-454.
  • [12] B. El-Chichakli, J. von Braun, C. Lang, D. Barben, J. Philip, Five cornerstones of a global bioeconomy, Nature, 2016, 535, 221-223.
  • [13] European Commission. Closing the Loop-An EU Action Plan for the Circular Economy; Communication From the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2015.
  • [14] European Commission. Expert Group Report-Review of the EU Bioeconomy Strategy and its Action Plan; European Commission: Brussels, Belgium, 2017.
  • [15] Ellen MacArthur Foundation. Towards the Circular Economy-Economic and Business Rationale for An Accelerated Transition. 2013. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthurFoundation-Towards-the-Circular-Economy-vol.1.pdf (accessed: 4 January 2021).
  • [16] Bioeconomy shaping the transition to a sustainable, biobased economy (I. Lewandowski, Ed.), Springer International Publishing AG, Cham, 2018.
  • [17] R. Eisenberg, H.B. Gray, G.W. Crabtree, Addressing the challenge of carbon-free energy, PNAS, 2020, 117, 12543-12549.
  • [18] Alternative energy resources; The way to a sustainable modern society (P. Pathak, R.R. Srivastava, Eds.), Springer Nature Switzerland AG, Cham, 2021.
  • [19] IPCC. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC . In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte V., Zhai P., Pirani A., editors. Cambridge University Press; 2021. Summary for policymakers; pp. 1-41. (V. Masson-Delmotte, P. Zhai, A. Pirani, Eds.) Cambridge University Press; 2021. Summary for policymakers; pp. 1-41.
  • [20] M. Popkiewicz, A. Kardaś, S. Malinowski, Nauka o klimacie, Sonia Draga, Katowice 2018.
  • [21] M. Krot, E. Lech, P. Falkowski, K. Polecki, Strach, odpowiedzialność, nadzieja. Filozoficzno-społeczne aspekty globalnego ocieplenia, Wydawnictwo Uniwersytetu w Białymstoku, Białystok 2021.
  • [22] T. Zhou, New physical science behind climate change: What does IPCC AR6 tell us? The Innovation 2021, 2, 100173.
  • [23] M. Falarz (Ed.), Climat change in Poland, past, present, future, Springer Nature Switzerland AG, Cham, 2021.
  • [24] Earth system science in the Anthropocene (E. Ehlers, T. Krafft, Eds.), Springer Verlag Berlin 2006.
  • [25] P. Bertrand, L. Legendre, Earth, our living planet; The earth system and its co-evolution with organisms, Springer Nature Switzerland AG, Cham, 2021.
  • [26] A. Kätelhön, R. Meys, S. Deutz, S. Suh, A. Bardow, Climate change mitigation potential of carbon capture and utilization in the chemical industry, PNAS, 2019, 116, 11187-11194.
  • [27] L.J. Müller, A. Kätelhön, M. Bachmann, A. Zimmermann, A. Sternberg, A. Bardow, A guideline for life cycle assessment of carbon capture and utilization, Front. Energy Res., 2020, 8, 15.
  • [28] W.-H. Wang, X. Feng, M. Bao, Transformation of carbon dioxide to formic acid and methanol, Springer Nature Singapore Pte Ltd., 2018.
  • [29] Biorefineries - industrial processes and products. Status quo and future directions (B. Kamm, P.R. Gruber, M. Kamm, Eds.), Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim 2006.
  • [30] Biorefineries: A step towards renewable and clean energy (P. Verma, Ed.), Springer Nature Singapore Pte Ltd. 2020.
  • [31] Life cycle assessment. Theory and practice (M.Z. Hauschild, R.K. Rosenbaum, S.I. Olsen, Eds.), Springer Int. Publ. AG 2018.
  • [32] I. Ioannou, S.C. D’Angelo, A. Galan-Martin, C. Pozo, J. Perez- -Ramirez, G. Guillen-Gosalbez, Proces modelling and life cycle assessment coupled with experimental work to shape the future sustainable production of chemicals and fuels, React. Chem. Eng., 2021, 6, 1179-1194.
  • [33] F. Piccinno, R. Hischier, S. Seeger, C. Som, From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. Journal of Cleaner Production, 2016, 135, 1085-1097. doi:10.1016/j.jclepro.2016.06.164.
  • [34] J.A. Tickner, R.V. Simon, M. Jacobs, L.D. Pollard, S.K. van Bergen, The nexus between alternatives assessment and green chemistry: supporting the development and adoption of safer chemicals, Green Chem. Lett. Rev., 2021, 14, 23-44.
  • [35] J. Polaczek, T. Zieliński, Development of chemical industry in Poland. Achievements and constraints, Polish Tech. Rev., 2019, 1, 11-16.
  • [36] A. Kamiński, Vision of the refineries’ development up to 2050, Polish Tech. Rev., 2019, 3, 8-18.
  • [37] Misja nauk chemicznych (Red. B. Marciniec), Wydawnictwo Nauka i Innowacje, Poznań 2011.
  • [38] S. O’Hagan, D.B. Kell, Analysing and navigating natural products space for generating small, diverse, but representative chemical libraries, Biotechnol. J., 2018, 13, 1700503.
  • [39] C.J. Bartodziej, The concept industry 4.0; an empirical analysis of technologies and applications in production logistics, Springer Gabler, 2017.
  • [40] R.A. Sheldon, D. Brady, D. Streamlining design, engineering, and applications of enzymes for sustainable biocatalysis. ACS Sustainable Chemistry & Engineering, 2021, 9, 8032-8052.
  • [41] Broecker W (2018) CO2: Earth’s climate driver. Geochem Perspect 7:117-196. https://doi.org/10.7185/geochempersp.7.2.
  • [42] Tortell P (ed) (2020) Earth 2020. An insider’s guide to a rapidly changing planet. OpenBook Publishers, Cambridge, UK. https://doi.org/10.11647/OBP.0193.
  • [43] M. Aresta, A. Dibenedetto, A. Angelini, The changing paradigm in CO2 utilization, J. CO2 Utiliz., 2013, 3-4, 65-73.
  • [44] E. Alper, O.Y. Orhan, CO2 utilization: developments in conversion processes, Petroleum, 2017, 3, 109-126.
  • [45] L. Orejuela-Escobar, A. Gualle, V. Ochoa-Herrera, G. Philippidis, Prospects of microalgae for biomaterial production and environmental applications at biorefineries, Sustainability, 2021, 13, 3063.
  • [46] N.S. Hosseini, H. Shang, J.A. Scott, Biosequestration of industrial off-gas CO2 for enhanced lipid productivity in open microalgae cultivation system, Renew. Sustain. Energy Rev., 2018, 92, 458-469.
  • [47] J. Kalina, A. Skorek-Osikowska, Ł. Bartela, P. Gładysz, K. Lampert, Evaluation of technological options for carbon dioxide utilization, J. Energy Resour. Technol., 2020, 142, 090901.
  • [48] K. Malik, S. Singh, S. Basu, A. Verma, Electrochemical reduction for CO2 for synthesis of green fuel, WIREs Energy Environ., 2017, e244.
  • [49] R. Francke, B. Schille, M. Roemelt, Homogeneously Catalyzed Electroreduction of Carbon Dioxide-Methods, Mechanisms, and Catalysts, Chemical Reviews 2018, 118, 4631-4701.
  • [50] C. Steinlechner, A.F. Roesel, E. Oberem, A. Päpcke, N. Rockstroh, F. Gloaguen, S. Lochbrunner, R. Ludwig, A. Spannenberg, H. Junge, R. Francke, M. Beller, Selective earth-abundant system for CO2 reduction: Comparing photo- and electrocatalytic processes, ACS Catal. 2019, 9, 2091-2100.
  • [51] M. Aresta, A. Dibenedetto, E. Quaranta, Reaction mechanisms in carbon dioxide conversion, Springer-Verlag, Berlin 2016.
  • [52] Advances in Carbon Management Technologies Vol. 1 Carbon Removal, Renewable and Nuclear Energy S.K. Sicdar, F. Princiotta (Eds.), CRC Press, Boca Raton, 2020.
  • [53] A. Galan-Martin, V. Tulus, I. Diaz, C. Pozo, J. Perez-Ramirez, Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries, One Earth, 2021, 4, 565-583.
  • [54] O.O. James, B. Chowdhury, M.A. Mesubic, S. Maity, Reflections on the chemistry of the Fischer–Tropsch synthesis, RSC Adv., 2012, 2, 7347-7366.
  • [55] R. Cuellar-Franca, P. Garcia-Gutierrez, I. Dimitriou, R.H. Elder, R.W.K. Allen, A. Azapagic, Utilizing carbon dioxide for transport fuels: The economic and environmental sustainability of different Fischer-Tropsch process designs, Applied Energy, 2019, 253, 113560.
  • [56] V. Kumaravel, J. Bartlett, S.C. Pillai, Photochemical conversion of carbon dioxide into fuels and value-added products, ACS EnergyLett., 2020, 5, 486-519.
  • [57] B.B.A. Bediako, Q. Qian, B. Han, Synthesis of C2+ chemicals from CO2 and H2 via C-C bond formation, Acc. Chem. Res., 2021, 54, 2467-2476.
  • [58] W. Li, H. Wang, XJiang, J. Zhu, Z. Liu, X. Guo, C. Song, A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts, RSC Adv., 2018, 8, 7651-7669.
  • [59] P.K. Shoo, Y. Zhang, S. Das, CO2 promoted reactions: an emerging concept for the synthesis of fine chemicals and pharmaceuticals, ACS Catal., 2021, 11, 3414-3442.
  • [60] Natural and artificial photosynthesis; solar power as an energy source (R. Razeghifard, Ed.), John Wiley and Sons, Inc., Hoboken NJ 2013.
  • [61] A. Mustafa, B.G. Lougou, Y. Shuai, Z. Wang, H. Tan, Current technology development for CO2 utilization into solar fuels and chemicals: A review, J. Energy Chem., 2020, 49, 96-123.
  • [62] A. Goeppert, M. Czaun, J.-P. Jones, G.K. Surya Prakash, G. A. Olah, Recycling of carbon dioxide to methanol and derived products - closing the loop, Chem. Soc. Rev., 2014, 43, 7995-8048.
  • [63] W.-H. Wang, X. Feng, M. Bao, Transformation of carbon dioxide to formic acid and methanol, Springer Nature Singapore Pte Ltd., 2018.
  • [64] J. Barber, Solar fuels and photosynthesis, Royal Society of Chemistry, London, 2012.
  • [65] K.E. Dalle, J. Warnan, , J.J. Leung, B. Reuillard, I.S. Karmel, E. Reissner, Electro- and solar driven fuel synthesis with first row transition metal complexes, Chen. Rev., 2019, 119, 2752-2875.
  • [66] S. Gleizer, R. Ben-Nissan, Y.M. Bar-On, N. Antonovsky, E. Noor, Y. Zohar, G. Jona, E. Krieger, M. Shamshoum, A. Bar-Even, R. Milo, Conversion of Escherichia coli to generate all biomass carbon from CO2, Cell, 2019, 179, 1255-1263.
  • [67] S. Guo, T. Asset, P. Atanassov, Catalytic hybrid electrocatalytic/biocatalytic cascades for carbon dioxide reduction and valorization, ACS Catal., 2021, 11, 3172-3188.
  • [68] R. Braakman, E. Smith, The emergence and early evolution of biological carbon-fixation. PLoS Comput. Biol., 2012, 8, e1002455.
  • [69] R. Carpine, G. Olivieri, K.J. Hellingwerf, A. Pollio, A. Marzocchella, Industrial Production of Poly-β-hydroxybutyrate from CO2: Can Cyanobacteria Meet this Challenge?, Processes 2020, 8, 323.
  • [70] Lanzillo, F.; Ruggiero, G.; Raganati, F.; Russo, M.E.; Marzocchella, A. Batch Syngas Fermentation by Clostridium carboxidivorans for Production of Acids and Alcohols, Processes, 2020, 8, 1075.
  • [71] B. Nowicka, J. Kruk, Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution, Microbiological Research, 2016, 186-187, 99-118.
  • [72] C.K.Winkler, J.H. Schrittwieser, W. Kroutil, Power of biocatalysis for organic synthesis, ACS Cent. Sci., 2021, 7, 1, 55-71.
  • [73] S. Gleizer, Y.M. Bar-On, R. Ben-Nissan, R. Milo, Engineering microbes to produce fuel, commodities and food from CO2 Cell Reports on Physical Science, 2020, 1, 100223.
  • [74] Biorefineries - industrial processes and products; status quo and future directions (B. Kamm, P.R. Gruber, M. Kamm, Eds.,) Wiley VCH Verlag GmbH & Co. KGaA, Weinheim 2006.
  • [75] Systems perspectives on biorefineries (B. Sanden, K. Pettersson, Eds.) Chalmers University of Technology, Göteborg 2013.
  • [76] Biomass and green chemistry; building a renewable pathway (S. Vaz, Jr., Ed.), Springer International Publishing AG, Cham 2018.
  • [77] C.A.C. Alzate, J.M. Botero, V.A. Marulanda, Biorefineries design and analysis, CRC Press, Boca Raton, FL 2019.
  • [78] Biorefineries: a step towards renewable and clean energy (P. Verma, Ed.), Springer Nature Singapore Pte Ltd. 2020.
  • [79] B. Burczyk, Biorafinerie: ile w nich chemii? Wiad. Chem., 2009, 63, 739-766.
  • [80] Biogospodarka, wybrane aspekty, (Red. M. Pink, M. Wojnarowska), Difin SA Warszawa 2020.
  • [81] I. Lewandowski, Biobased value chains for a growing bioeconomy, GCB Bioenergy, 2019, 11, 4-8.
  • [82] Biorefinery production technologies for chemicals and energy, (A. Kuila, M. Mukhopadhyay, Eds.), John Wiley and Sons, Hoboken NJ 2020.
  • [83] Emerging technologies for biorefineries, biofuels and value-added commodities, (Z.-H. Liu, A. Ragauskas, (Eds.) Springer Nature Switzerland AG, Cham 2021.
  • [84]. P. Bajpai, Pretreatment of lignocellulosic biomass for biofuel production, Springer Science + Business Media, Singapore Pte Ltd. 2016.
  • [85] J.N. PutroF.E. Soetaredjo, S.-Y. Lin, Y.-H. Ju, S. Ismadji, Pretreatment and conversion of lignocellulose biomass into valuable chemicals, RSC Adv., 2016, 6, 46834-46852.
  • [86] J. Baruah, B.K. Nath, R. Sharma, S. Kumar, R.C. Deka, D.C. Baruah, E. Kalita, Recent trends in the pretreatment of lignocellulosic biomass for value-added products, Front. Energy Res., 2018, 6, 141.
  • [87] B. Kumar, N. Bhardwaj, K. Agrawal, V. Chaturvedi, P. Verma, Fueal Proces. Technol., 2020, 199, 106244.
  • [88] S.S. Hassan, G.A. Williams, A.K. Jaiswal, Lignocellulosic biorefineries in Europe: current state and prospects, Trends in Biotechnol., 2019, 37, 231-234.
  • [89] A. Ubando, C.B. Felix, W.-H. Chen, Biorefineries in circular bioeconomy: a comprehensive review, Biores. Technol., 2020, 299, 122585.
  • [90] R. Chandra, H.M.N. Iqbal, G. Vishal, H.-S. Lee, S. Nagra, Algal biorefinery: a sustainable approach to valorize algal-based biomass towards multiple product recovery, Biores. Technol., 2019, 278, 346-359.
  • [91] G. Machado, S. Leon, F. Santos, R. Lourega, J. Dullius, M. Mollmann, P. Eichler, Literature review on furfural production from lignocellulosic biomass. Natural Resources, 2016, 7, 115-129.
  • [92] L.C. Nhien, N.V.D. Long, S. Kimb, M. Lee, Design and optimization of intensified biorefinery process for furfural production through a systematic procedure, Biochemical Engineering Journal, 2026, 116, 166-175.
  • [93] C. Cabrele, O. Reiser, The modern face of synthetic heterocyclic chemistry, J. Org. Chem., 2016, 81, 10109-10125.
  • [94] A. Gandini, Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress, Polym. Chem., 2010, 1, 245-251.
  • [95] C.M. Cai, T. Zhang, R. Kumar, C.E. Wyman, Integrated furfural production as a renewable fuel and Chemical platform from lignocellulosic biomass, J. Chem. Technol. Biotechnol., 2014, 89, 2-10.
  • [96] J.P. Lange, F. van den Heide, J. van Buijtenen, R. Price, Furfural: a promising platform for lignocellulosic biofuels, ChemSusChem, 2012, 5, 150-166.
  • [97] F. Delbecq, Y. Wang, A. Muralidhara, K. El Ouardi, G. Marlair, C. Len, Hydrolysis of hemicellulose and derivatives - A review of recent advances in the production of furfural. Front. Chem. 2018, 6, 146-174.
  • [98] A. Iriondo, I. Agirre, N. Viar, J. Requies, Value-added bio-chemicals commodities from catalytic conversion of biomass derived furan-compounds, Catalysts, 2020, 10, 895.
  • [99] R. Gogar, S. Viamajala, P.A. Relue, S. Varanasi, Techno-economic assessment, of mixed-furan production from divese biomass hydrolysates, ACS Sustainable Chem. Eng., 2021, 9, 3428-3438.
  • [100] S.P. Teong, G. Yi, Y. Zhang, Hydroxymethylfurfural production from bioresources: past, present and future, Green Chem., 2014, 16, 2015-2026.
  • [101] F. Menegazzo, E. Ghedini, M. Signoretto, C. Thoma, J. Konnerth, W. Sailer-Kronlachner, P. Solt, T. Rosenau, H.W.G. van Herwijnen, Current situation of the challenging scale-up development of hydroxymethylfurfural production, ChemSusChem, 2020, 13, 3544-3564. (HMF) production from real biomasses, Molecules, 2018, 23, 2201.
  • [102] L.T. Mika, E. Csefalvay, A. Nemeth, Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability, Chem. Rev. 2018, 505-613.
  • [103] C. Thoma, J. Konnerth, W. Sailer-Kronlachner, P. Solt, T. Rosenau, H.W.G. van Herwijnen, Current situation of the challenging scale-up development of hydroxymethylfurfural production, ChemSusChem, 2020, 13, 3544-3564.
  • [104] M. Knierbeim, M. Voges, C. Held, 5-Hydroxymethylfurfural synthesis in nonaqueous two-phase system (NTPS)-PC-SAFT predictions and validation, Org. Process Res. Dev., 2020, 24, 1052-1062.
  • [105] Q. Hou, X. Qi, M. Zhen, H. Qian, Y. Nie, C. Bai, S. Zhang, X. Bai, M. Yu, Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural, Green Chem, 2021, 23, 119-231.
  • [106] D.S. van Es, Rigid biobased building blocks: current development and outlook, J. Renew. Mater., 1, 61-72.
  • [107] A.F. Sousa, C. Vilela, A.C. Fonseca, G.-J.M. Gruter, J.F.J. Coelho, A.J. Silvestre, M. Matos, C.S. Freire, Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: A tribute to furan excellency. Polym. Chem., 2015, 6, 5961-5983.
  • [108] I. Delidovich, P.J.C. Hausoul, L. Deng, R. Pfützenreuter, M. Rose, R. Palkovits, Alternative monomers based on lignocellulose and their use for polymer production. Chem. Rev. 2016, 116, 1540-1599.
  • [109] G.R. Dick, A.D. Frankhouser, A. Banerjee, M.W. Kanan, A scalable carboxylation route to furan-2,5-dicarboxylic acid, Green Chem., 2017, 19, 2966-2972.
  • [110] Z.-Y. Yang, M. Wen, M.-H. Zong,N. Li, Synergistic chemo/biocatalytic synthesis of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural, Catal. Commun., 2020, 139, 105979.
  • [111] A.A. Ghatta, J.D.E.T. Wilton-Ely, J.P. Hallett, From sugars to FDCA: a techno-economic assessment using a design concept based on solvent selection and carbon dioxide emissions, Green Chem., 2021, 23, 1716-1733.
  • [112] X. Zhang, M. Fevre, G.O. Jones, R.M. Waymouth, Catalysis as an enabling science for sustainable polymers, Chem Rev., 2018, 118, 839-885.
  • [113] A. Karich, S.B. Kleeberg, R. Ullrich, M. Hofrichter, Enzymatic preparation of 2,5-furandicarboxylic acid (FDCA) - a substitute of terephtalic acid - by the joined action of three fungal enzymes, Microorganisms, 2018, 6, 5.
  • [114] F. Koopman, N. Wierckx, J.H. de Winde, H.J. Ruijssenaars, Efficien whole-cell biotransformation of 5-(hydroxymethyl) furfural into FDCA, 2,5-furandicarboxylic acid, Biores. Technol., 2010, 101, 6291-6296.
  • [115] C.H. Christensen, J. Rass-Hansen, C.C. Marsden, E. Taarning, K. Egeblad, The renewable chemicals industry, ChemSusChem, 2008, 1, 283-289.
  • [116] R. Geyer, J.R. Jambeck, K.L. Law, Production, use and fate of all plastics ever made, Sci. Adv., 2017, 3, e1700782.
  • [117] R.M. O’Dea, J.A. Willie, T.H. Epps III, 100th Anniversary of macromolecular science viewpoint: polymers from lignocellulosic biomass. Current challenges and future opportunities, ACS Macro Lett., 2020, 9, 476-493.
  • [118] H. Kim, S. Lee, Y. Ahn, J. Lee, W. Won, Sustainable production of bioplastics from lignocellulosic biomass: technoeconomic analysis and life-cycle assessment, ACS Sustainable chem. Eng., 2020, 8, 12419-12429.
  • [119] G. Lipner, G. Grynkiewicz, Zastosowanie alceleratorowej spektrometrii masowej (AMS) w badaniach przedklinicznych leków. Cz. I - Podstawy metodyczne, Przemysł Chem., 2012, 91, 314-318.
  • [120] L. Manfra, V. Marengo, G. Libralato, M. Costantini, F. De Falco, M. Cocca, Biodegradable polymers: a real opportunity to solve marine plastic pollution?, J. Hazard. Mater., 2021, 416, 125763.
  • [121] D.A. Ferreira-Filipe, A. Paco, A.C. Duarte, T. Rocha-Santos, A.L. Patricio Silva, Are biobased plastics green alternatives? - a critical review, Int. J. Environ. Res. Public Health, 2021, 18, 7729.
  • [122] J.M. Millican, S. Agarwal, Plastic pollution: a material problem? Macromolecules, 2021, 54, 4455-4469.
  • [123] J.D. Keasling, A. Mendoza, P.S. Baran, A constructive debate, Nature, 2012, 492, 188-189.
  • [124] Oslo manual; guidelines for collecting and interpreting innovation data, (3-rd Ed.) A joint publication of OECD and Eurostat, 2005; ISBN 92-64-01308-3.
  • [125] R. Wohlgemuth, Biocatalysis - Key enabling tools from biocatalytic one-step and multi-step reactions to biocatalytic total synthesis, New Biotechnol., 2021, 60, 113-123.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6263ed13-e8bf-4b0a-8e11-ec891a214a88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.