PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Novel closed-loop control system for shunt active power filters: a comparative study with open-loop control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a novel closed-loop control system for a shunt active power filter, characterised by its high effectiveness in compensating for supply current harmonics. The proposed control algorithm is compared with the open-loop control, emphasising that no hardware modifications have been made. Thus, the differences in APF operation observed during the tests are solely due to the control algorithm. The research includes a multi-criteria comparison of the two control systems under different operating conditions.
Rocznik
Strony
869--884
Opis fizyczny
Bibliogr. 26 poz., fot., rys., tab., wykr., wz.
Twórcy
  • Department of Measurement Science, Electronics and Control, Faculty of Electrical Engineering, Silesian University of Technology, 10 Akademicka Str., 44-100, Gliwice Poland
  • Department of Power Electronics and Electrical Machines, Faculty of Electrical and Control Engineering, Gdansk University of Technology, 11/12 Gabriela Narutowicza Str, 80-233, Gdansk, Poland
Bibliografia
  • [1] Yi H., Zhuo F., Zhang Y., Li Y., Zhang W., Chen W., Liu J., A source-current-detected shunt active power filter control scheme based on vector resonant controller, IEEE Transaction on Industry Applications, vol. 50, no. 3, pp. 1953–1965 (2014), DOI: 10.1109/TIA.2013.2289956.
  • [2] Hu J.-G., Shi Y., Cheng G.-Y., A state-space approach to the integration of detection and control for shunt active power filter, 35th Chinese Control Conference, pp. 8660–8665 (2016), DOI: 10.1109/chicc.2016.7554739.
  • [3] Ibanez-Hidalgo I., Cuzmar R.H., Sanchez-Ruiz A., Perez-Basante A., Zubizarreta A., Ceballos S., Aguilera R.P., Enhanced PI control based SHC-PWM strategy for active power filters, IEEE Open Journal of the Industrial Electronics Society, vol. 5, pp. 1174–1189 (2024), DOI: 10.1109/OJIES.2024.3483293.
  • [4] Mattavelli P., Marafao F.P., Repetitive-based control for selective harmonic compensation in active power filters, IEEE Transactions on Industrial Electronics, vol. 51, pp. 1018–1024 (2004), DOI: 10.1109/TIE.2004.834961.
  • [5] Li Y., Yi H., Zhuo F., Jiang X., Analysis and stabilization of APF systems considering dynamic of nonlinear loads, IEEE Transactions on Power Electronics, vol. 39, no. 1, pp. 409–423 (2024), DOI: 10.1109/TPEL.2023.3324650.
  • [6] Lin H., Guo X., Chen D., Wu S., Chen G., A frequency adaptive repetitive control for active power filter with 380v/75a sic-inverter, IEEE Transactions on Industry Applications, vol. 58, no. 4, pp. 5469– 5479 (2022), DOI: 10.1109/TIA.2022.3176848.
  • [7] Gao C., He S., Cui B., Zhang B., Ming L., Leung K.N., Loh P.C., Quantization effects on digital-PRcontrolled active power filter, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 6, pp. 5785–5797 (2023), DOI: 10.1109/JESTPE.2023.3313814.
  • [8] Pichan M., Seyyedhosseini M., Hafezi H., A new deadbeat based direct power control of shunt active power filter with digital implementation delay compensation, IEEE Access, vol. 10, pp. 72866–72878 (2022), DOI: 10.1109/ACCESS.2022.3188685.
  • [9] Li Y., Yi H., Zhuo F., Jiang X., Harmonic oscillation and stabilization strategy of source-current detected shunt APF considering interaction with nonlinear load and grid impedance, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 1, pp. 420–430 (2024), DOI: 10.1109/JESTPE.2023.3329171.
  • [10] Chen H., Liu H., Xing Y., Hu H., Enhanced DFT-based controller for selective harmonic compensation in active power filters, IEEE Transactions on Power Electronics, vol. 34, no. 8, pp. 8017–8030 (2019), DOI: 10.1109/TPEL.2018.2877848.
  • [11] Urrea-Quintero J.-H., Munoz-Galeano N., Lopez-Lezama J.M., Robust control of shunt active power filters: A dynamical model-based approach with verified controllability, Energies, vol. 13, no. 23 (2020), DOI: 10.3390/en13236253.
  • [12] Rahman S., Cervantes R., Khan I.A., Iqbal A., Ayob S., Active power filtering solution for improving power quality in cold ironed electric ships, IEEE Conference on Energy Conversion (2021), DOI: 10.1109/CENCON51869.2021.9627303.
  • [13] Zhang Y., Dai K., Chen X., Kang Y., Dai Z., Stability analysis of SAPF by viewing DFT as cluster of BPF for selective harmonic suppression and resonance damping, IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1598–1607 (2019), DOI: 10.1109/TIA.2018.2872649.
  • [14] Yang L., Yang J., Gao M., Chen Y., Zhang X., A systematic approach via IIR filters for enhancing the robustness of LCL-type shunt active power filters to grid impedance, IEEE Transactions on Industry Applications, vol. 56, no. 5, pp. 5095–5107 (2020), DOI: 10.1109/TIA.2020.2999273.
  • [15] Yang Z., Yi H., Zhuo F., Yin X., Wei W., Zhang Y., Zhang H., Wang Q., A system-level harmonic control method based on multi bus voltage detected APF without exact phase synchronization, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 3, pp. 2618–2631 (2023), DOI: 10.1109/JESTPE.2023.3267021.
  • [16] Mariethoz S., Rufer A., Open loop and closed loop spectral frequency active filtering, IEEE Transactions on Power Electronics, vol. 17, no. 4, pp. 564–573 (2002), DOI: 10.1109/TPEL.2002.800973.
  • [17] Karbasforooshan M.-S., Monfared M., Adaptive predictive deadbeat current control of single-phase multi-tuned shunt hybrid active power filters, IEEE Transactions on Power Delivery, vol. 39, no. 1, pp. 446–454 (2024), DOI: 10.1109/TPWRD.2023.3262662.
  • [18] Yang L., Yang J., Gao M., Watson A., Wheeler P., Current control of LCL-type shunt APFs: Damping characteristics, stability analysis, and robust design against grid impedance variation, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 4, pp. 5026–5042 (2021), DOI: 10.1109/JESTPE.2020.3017551.
  • [19] Briz F., Garcia P., Degner M.W., Diaz-Reigosa D., Guerrero J.M., Dynamic behaviour of current controllers for selective harmonic compensation in three-phase active power filters, IEEE Transactions on Industry Applications, vol. 49, no. 3, pp. 1411–1420 (2013), DOI: 10.1109/TIA.2013.2253537.
  • [20] Bielecka A., Wojciechowski D., Stability analysis of shunt active power filter with predictive closed-loop control of supply current, Energies, vol. 14, no. 8, pp. 1–17 (2021), DOI: 10.3390/en14082208.
  • [21] Bula D., Grabowski D., Lewandowski M., Maciazek M., Piwowar A., Software solution for modeling, sizing, and allocation of active power filters in distribution networks, Energies, vol. 14, no. 1 (2021), DOI: 10.3390/en14082208.
  • [22] Bielecka A., Wojciechowski D., Predictive control of a parallel active filter with feedback from the supply current, Przegląd Elektrotechniczny, vol. 95, no. 6, pp. 128–132 (2019), DOI: 10.15199/48.2019.06.23.
  • [23] Bielecka A., Wojciechowski D., Compensation of supply current harmonics, reactive power, and unbalanced load current balance in the closed-loop control of a shunt active power filter, Scientific Papers of the Maritime University of Szczecin, vol. 133, no. 61, pp. 9–16 (2020), DOI: 123456789/2609.
  • [24] Bielecka A., Wojciechowski D., Parallel active filter controlled with feedback from the supply current - laboratory tests, Przegląd Elektrotechniczny, vol. 99, no. 9, pp. 245–257 (2023).
  • [25] Wojciechowski D., Unified LCL circuit for modular active power filter, COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 31, no. 6, pp. 1985–1997 (2012), DOI: 10.13199/48.2023.05.30.
  • [26] Szwarc K.J., Cichowski A., Nieznanski J., Szczepankowski P., Modeling the effect of parasitic capacitances on the dead-time distortion in multilevel NPC inverters, IEEE International Symposium on Industrial Electronics, Gdansk, Poland, pp. 1869–1874 (2011), DOI: 10.1109/ISIE.2011.5984442.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-625e42e2-eb82-40f0-977e-bbe39257f3c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.