PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comprehensive analysis of reclamation of spent lubricating oil using green solvent: RSM and ANN approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
The International Chemical Engineering Conference 2021 (ICHEEC): 100 Glorious Years of Chemical Engineering and Technology, September 16–19, 2021
Języki publikacji
EN
Abstrakty
EN
Waste lubricating oil (WLO) is the most significant liquid hazardous waste, and indiscriminate disposal of waste lubricating oil creates a high risk to the environment and ecology. Present investigation emphasizes the re-refining of used automobile engine oil using the extraction-flocculation approach to reduce environmental hazards and convert the waste to energy. The extraction-flocculation process was modeled and optimized using response surface methodology (RSM), artificial neural network (ANN), and genetic algorithm (GA). The present study assessed parametric effects of refining time, refining temperature, solvent to waste oil ratio, and flocculant dosage. Experimental findings showed that the percentage of yield of recovered oil is to the tune of 86.13%. With the Central Composite Design approach, the maximum percentage of extracted oil is 85.95%, evaluated with 80 minutes of refining time, 50.17 C refining temperature, 7:1 solvent to waste oil ratio and flocculant dosage of 3 g/kg of solvent and 86.71% with 79.97 minutes refining time, 55.53 C refining temperature, 4.89:1 g/g solvent to waste oil ratio, 2.99 g/kg of flocculant concentration with Artificial Neural Network. A comparison shows that the ANN gives better results than the CCD approach. Physico-chemical properties of the recovered lube oil are comparable with the properties of fresh lubricating oil.
Rocznik
Strony
119--–135
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • National Institute of Technology, Department of Chemical Engineering, Durgapur-713209, India
  • Brainware University, Department of Chemistry, Barasat, Kolkata, West Bengal 700125
  • National Institute of Technology, Department of Chemical Engineering, Durgapur-713209, India
autor
  • National Institute of Technology, Department of Chemical Engineering, Durgapur-713209, India
Bibliografia
  • 1. Abro R., Chen X., Harijan K., Dhakan Z.A., Ammar M., 2013. A comparative study of recycling of used engine oil using extraction by composite solvent, single solvent, and acid treatment methods. ISRN Chem. Eng., 2013, 952589. DOI: 10.1155/2013/952589.
  • 2. Abu-Elella R., Ossman M.E., Farouq R., Abd-Elfatah M., 2015. Used motor oil treatment: Turning waste oil into valuable products. Int. J. Chem. Biochem. Sci. IJCBS, 7, 57–67.
  • 3. Al-Shathr A., Shakor Z.M., Majdi H.S., AbdulRazak A.A., Albayati T.M., 2021. Comparison between Artificial Neural Network and Rigorous Mathematical Model in simulation of industrial heavy naphtha reforming process. Catalysts., 11, 1034. DOI: 10.3390/catal11091034.
  • 4. Armioni M.D., Raţiu S.A., 2020. Used engine oil recycling techniques: a comparison. Student Scientific Symposium HD-50-STUD. Hunedoara, The Romania, 15 May 2020, 2–8.
  • 5. Azad F.N., Ghaedi M., Asfaram A., Jamshidi A., Hassani G., Goudarzi A., Azqhandi M.H.A., Ghaedi A., 2016. Optimization of the process parameters for the adsorption of ternary dyes by Ni doped FeO(OH)-NWs-AC using response surface methodology and an artificial neural network. RSC Adv., 6, 19768–19779. DOI: 10.1039/c5ra26036a.
  • 6. Chakraborty S., Dasgupta J., Farooq U., Sikder J., Drioli E., Curcio S., 2014. Experimental analysis, modeling and optimization of chromium (VI) removal from aqueous solutions by polymer-enhanced ultrafiltration. J. Memb. Sci., 456, 139–154. DOI: 10.1016/j.memsci.2014.01.016.
  • 7. Chen W.H., Chen Y.C., Lin J.G., 2013. Evaluation of biobutanol production from non-pretreated rice straw hydrolysate under non-sterile environmental conditions. Bioresour. Technol., 135, 262–268. DOI: 10.1016/j.biortech. 2012.10.140.
  • 8. Chowdhury S., Halder G., Mandal T., Sikder J., 2019. Cetylpyridinium bromide assisted micellar-enhanced ultrafiltration for treating enrofloxacin-laden water. Sci. Total Environ., 687, 10 23. DOI: 10.1016/j.scitotenv.2019.06.074.
  • 9. Dabai M.U., Bello N., 2019. Comparative study of regeneration of used lubricating oil using sulphuric and oxalic acids / clay treatment process. Int. J. Innov. Sci. Eng. Technol., 6(3), 13–23.
  • 10. Daham G.R., AbdulRazak A.A.J., Hamadi A.S., Mohammed A.A., 2017. Re-refining of used lubricant oil by solvent extraction using central composite design method. Korean J. Chem. Eng., 34, 2435–2444. DOI: 10.1007/s11814-017-0139-5.
  • 11. Diphare M., Muzenda E., 2013. Influence of solvents on the extraction of oil from waste lubricating grease: A comparative study. 2𝑛𝑑 International Conference on Agricultural, Environment and Biological Sciences. Pattaya, the Thailand, 17–18 December 2013, 17–19.
  • 12. Gottipati R., Mishra S., 2010. Process optimization of adsorption of Cr(VI) on activated carbons prepared from plant precursors by a two-level full factorial design. Chem. Eng. J., 160, 99–107. DOI: 10.1016/j.cej.2010.03.015.
  • 13. Kamal A., Khan F., 2009. Effect of Extraction and Adsorption on Re-refiningof Used Lubricating Oil. Oil Gas Sci. Technol. – Rev. IFP, 64, 191–197. DOI: 10.2516/ogst/2008048.
  • 14. Khalaf I.H., Al-Sudani F.T., AbdulRazak A.A., Aldahri T., Rohani S., 2021. Optimization of Congo red dye adsorption from wastewater by a modified commercial zeolite catalyst using response surface modeling approach. Water Sci. Technol., 83, 1369–1383. DOI: 10.2166/wst.2021.078.
  • 15. Khoshroo A., Emrouznejad A., Ghaffarizadeh A., Kasraei M., Omid M., 2018. Sensitivity analysis of energy inputs in crop production using artificial neural networks. J. Clean. Prod., 197, 992–998. DOI: 10.1016/j.jclepro.2018.05.249.
  • 16. Kupareva A., Mäki-Arvela P., Murzin D.Y., 2013. Technology for rerefining used lube oils applied in Europe: A review. J. Chem. Technol. Biotechnol., 88, 1780–1793. DOI: 10.1002/jctb.4137.
  • 17. McClellan A.L., 1963. Tables of experimental dipole moments. W.H. Freeman and Company, San Francisco and London.
  • 18. Mohammed R.R., Ibrahim I.A.R., Taha A.H., McKay G., 2013. Waste lubricating oil treatment by extraction and adsorption. Chem. Eng. J., 220, 343–351. DOI: 10.1016/j.cej.2012.12.076.
  • 19. Mortier R., Fox M.F., Orszulik S.T., 2010. Chemistry and technology of lubricants. 3rd edition, Springer Science ̧ Business Media B.V., New York. DOI: 10.1007/978-1-4020-8662-5.
  • 20. Myers R.H., Montgomery D.C., Anderson-Cook C.M., 2002. Response surface methodology. Process and product optimization using designed experiments. 2nd edition. John Wiley & Sons, Inc.
  • 21. Osman D.I., Attia S.K., Taman A.R., 2018. Recycling of used engine oil by different solvent. Egypt. J. Pet., 27, 221–225. DOI: 10.1016/j.ejpe.2017.05.010.
  • 22. Pinheiro C.T., Pais R.F., Quina M.J., Gando-Ferreira L.M., 2018a. Regeneration of waste lubricant oil with distinct properties by extraction-flocculation using green solvents. J. Clean. Prod., 200, 578–587. DOI: 10.1016/j.jclepro.2018.07.282.
  • 23. Pinheiro C.T., Quina M.J., Gando-Ferreira L.M., 2018b. New methodology of solvent selection for the regeneration of waste lubricant oil using greenness criteria. ACS Sustain. Chem. Eng., 6, 6820–6828. DOI: 10.1021/acssuschemeng.8b00646.
  • 24. Rincón J., Cañizares P., García M.T., 2005. Waste oil recycling using mixtures of polar solvents. Ind. Eng. Chem. Res., 44, 7854–7859. DOI: 10.1021/ie0580452.
  • 25. Rincón J., Cañizares P., García M.T., Gracia I., 2003. Regeneration of used lubricant oil by propane extraction. Ind. Eng. Chem. Res., 42, 4867–4873. DOI: 10.1021/ie030013w.
  • 26. Sejkorová M., Šarkan B., Veselík P., Hurtová I., 2020. FTIR spectrometry with PLS regression for rapid TBN determination of worn mineral engine oils. Energies, 13, 6438. DOI: 10.3390/en13236438.
  • 27. Sevinc H., Hazar H., 2020. Investigation of performance and exhaust emissions of a chromium oxide coated diesel engine fueled with dibutyl maleate mixtures by experimental and ANN technique. Fuel, 278, 118338. DOI: 10.1016/j.fuel.2020.118338.
  • 28. Shojaeimehr T., Rahimpour F., Khadivi M.A., Sadeghi M., 2014. A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu2 ̧ adsorption optimization using light expended clay aggregate (LECA). J. Ind. Eng. Chem., 20, 870–880. DOI: 10.1016/j.jiec.2013.06.017.
  • 29. Speight J.G., Exall D.I., 2014. Refining used lubricating oils. 1st edition. CRC Press. DOI: 10.1201/b16745.
  • 30. Udonne J.D., 2011. A comparative study of recycling of used lubrication oils using distillation, acid and activated charcoal with clay methods. J. Pet. Gas Eng., 2(2), 12–19. DOI: 10.5897/JPGE.9000001.
  • 31. Usman M., Jamil M.K., Riaz F., Hussain H., Hussai G., Shah M.H., Qyyum M.A., Salman C.A., Lee M., 2021.
  • 32. Refining and reuse of waste lube oil in SI engines: A novel approach for a sustainable environment. Energies, 14, 2937. DOI: 10.3390/en14102937.
  • 33. Voelkel A., Fall J., 2014. Solubility parameter as polarity measure for high-boiling oil products. Fuel, 122, 310–315. DOI: 10.1016/j.fuel.2014.01.021.
  • 34. Yang X., Chen L., Xiang S., Li L., Xia D., 2013. Regeneration of waste lubricant oil by extraction-flocculation composite refining. Ind. Eng. Chem. Res., 52, 12763–12770. DOI: 10.1021/ie4015099.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62565e33-5c77-4867-933e-a782c0e4124f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.