PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Diffuse large B-cell lymphoma (DLBCL) is a fast-growing and aggressive neoplasm originating from B lymphocytes. Evaluation of proliferation index (PI) based on Ki67 immunohistochemical nuclear staining is used to distinguish proliferating (immunopositive) from nonproliferating (immunonegative) lymphoma cells. Human interpretation of PI varies and is time-consuming, therefore automatic computer-assisted approach may facilitate the performance. Herein we propose a new fully automatic proliferation index estimation (FLAPIE) algorithm, dedicated to detection of immunopositive and immunonegative nuclei, and evaluation of PI in digital microscopy images of DAB&H-stained samples from patients with high-grade DLBCL. FLAPIE performs nuclei detection in original RGB colour space and is independent of image brightness due to its textural-statistical approach. Validation of FLAPIE was performed in 61 non-overlapping whole-slide imagefragments and compared to the results of PI estimation by QuPath open-source software, MetPiKi algorithm and manual evaluation by two independent observers. Interobserver agreement was calculated between the nuclei count and PIs by two observers. High concordance was found between both DAB and H-stained nuclei count, and PIs by two observers. Compared to MetPiKi, FLAPIE presented improved results of DAB and H-stained nuclei detection. In contrary to MetPiKi and QuPath, FLAPIE performed nuclei detection in all images and its results closely matched the number of DAB-stained nuclei evaluated by two observers. No significant difference was found between PIs by all computational methods and observers. FLAPIE achieved good results in PI estimation and prospectively aims to serve as a tool for clinical application in support of patients selection and decision to treatment.
Twórcy
  • Laboratory of Processing and Analysis of Microscopic Images, Hybrid and Analytical Microbiosystems Department, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena st., 02-109 Warsaw, Poland
  • Laboratory of Processing and Analysis of Microscopic Images, Hybrid and Analytical Microbiosystems Department, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland; Department of Pathomorphology, Central Clinical Hospital of the Ministry of the Interior and Administration, Warsaw, Poland
  • Laboratory of Processing and Analysis of Microscopic Images, Hybrid and Analytical Microbiosystems Department, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Laboratory of Processing and Analysis of Microscopic Images, Hybrid and Analytical Microbiosystems Department, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • [1] Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of hematopoietic and lymphoid tissues. In: Bosman FT, Jaffe ES, Lakhani SR, Ohgaki H, editors. World Health Organization Classification of Tumours. Lyon, France: IARC; 2008.
  • [2] Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES, et al. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 2011;117:5019-32.
  • [3] Xie Y, Pittaluga S, Jaffe ES. The histological classification of diffuse large B-cell lymphomas. Semin Hematol 2015;52:57-66.
  • [4] Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016;127:2375-90.
  • [5] Nogai H, Dörken B, Lenz G. Pathogenesis of non-Hodgkin's lymphoma. J Clin Oncol 2011;29:1803-11.
  • [6] Sehn LH. Paramount prognostic factors that guide therapeutic strategies in diffuse large B-cell lymphoma. Hematology Am Soc Hematol Educ Program 2012;2012:402-9.
  • [7] Cultrera JL, Dalia SM. Diffuse large B-cell lymphoma: current strategies and future directions. Cancer Control 2012;19:204-13.
  • [8] Li S, Young KH, Medeiros LJ. Diffuse large B-cell lymphoma. Pathology 2018;50:74-87.
  • [9] The International Non-Hodgkin's Lymphoma Prognostic Factors Project. A predictive model for aggressive non- Hodgkin's lymphoma. N Engl J Med 1993;329:987-94.
  • [10] A Clinical Evaluation of the International Lymphoma Study Group Classification of Non-Hodgkin's Lymphoma. The Non-Hodgkin's lymphoma classification project. Blood 1997;89:3909-18.
  • [11] Lones MA, Auperin A, Raphael M, McCarthy K, Perkins SL, MacLennan KA, et al. Mature B-cell lymphoma/leukemia in children and adolescents: intergroup pathologist consensus with the Revised European-American Lymphoma Classification. Ann Oncol 2000;11:47-51.
  • [12] Borlot VF, Biasoli I, Schaffel R, Azambuja D, Milito C, Luiz RR, et al. Evaluation of intra- and interobserver agreement and its clinical significance for scoring bcl-2 immunohistochemical expression in diffuse large B-cell lymphoma. Pathol Int 2008;58:596-600.
  • [13] Diebold J, Anderson JR, Armitage JO, Connors JM, Maclennan KA, Müller-Hermelink HK, et al. Diffuse large B-cell lymphoma: a clinicopathologic analysis of 444 cases classified according to the updated Kiel classification. Leuk Lymphoma 2002;43:97-104.
  • [14] Colomo L, López-Guillermo A, Perales M, Rives S, Martínez A, Bosch F, et al. Clinical impact of the differentiation profile assessed by immunophenotyping in patients with diffuse large B-cell lymphoma. Blood 2003;101:78-84.
  • [15] Baran M, Canoz O, Altuntas H, Sivgin S, Cetin M, Yay A, et al. Immunohistochemical investigation of P16. P53 and Ki-67's prognostic values in diffuse large B-Cell lymphomas Bratisl Lek Listy 2017;118:602-8.
  • [16] He X, Chen Z, Fu T, Jin X, Yu T, Liang Y, et al. Ki-67 is a valuable prognostic predictor of lymphoma but its utility varies in lymphoma subtypes: evidence from a systematic meta-analysis. BMC Cancer 2014;14:153.
  • [17] Broyde A, Boycov O, Strenov Y, Okon E, Shpilberg O, Bairey O, et al. Role and prognostic significance of the Ki-67 index in non-Hodgkin's lymphoma. Am J Hematol 2009;84:338-43.
  • [18] Tang Y, Zhou Y, Cheng LL, Su YZ, Wang CB. BCL2/Ki-67 index predict survival in germinal center B-cell like diffuse large B-cell lymphoma. Oncol Lett 2017;14:3767-73.
  • [19] Westbrook JI, Georgiou A, Dimos A, Germanos T. Computerised pathology test order entry reduces laboratory turnaround times and influences tests ordered by hospital clinicians: a controlled before and after study. J Clin Pathol 2006;59:533-6.
  • [20] Prasad K, Prabhu GK. Image analysis tools for evaluation of microscopic views of immunohistochemically stained specimen in medical research – a review. J Med Syst 2012;36:2621-31.
  • [21] Chabot-Richards D, Martin D, Myers OB, Czuchlewski DR, Hunt K.E.. Quantitative image analysis in the assessment of diffuse large B-cell lymphoma. Mod Pathol 2011;24:1598-605.
  • [22] Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: open source software for digital pathology image analysis. Sci Rep 2017;7:16878.
  • [23] Staniszewski W. Virtual microscopy data management and image analysis in Aperio ScanScope system. Folia Histochem Cytobiol 2009;47:699-701.
  • [24] Tuominen VJ, Ruotoistenmäki S, Viitanen A, Jumppanen M, Isola J. ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res 2010;12:R56.
  • [25] Konsti J, Lundin M, Joensuu H, Lehtimäki T, Sihto H, Holli K, et al. Development and evaluation of a virtual microscopy application for automated assessment of Ki-67 expression in breast cancer. BMC Clin Pathol 2011;11:3.
  • [26] Mungle T, Tewary S, Arun I, Basak B, Agarwal S, Ahmed R, et al. Automated characterization and counting of Ki-67 protein for breast cancer prognosis: a quantitative immunohistochemistry approach. Comput Methods Programs Biomed 2017;139:149–61.
  • [27] Klonowski W, Korzynska A, Gomolka R. Computer analysis of histopathological images for tumor grading. Physiol Meas 2018 [16 January, Epub ahead of print].
  • [28] Korzynska A, Roszkowiak L, Zak J, Lejeune M, Orero G, Bosch R, et al. The METINUS Plus method for nuclei quantification in tissue microarrays of breast cancer and axillary node tissue section. Biomed Signal Process Control 2017;32:1-9.
  • [29] Roszkowiak L, Korzynsk A, Zak J, Pijanowska D, Siemion K, Kozłowski W, et al. The estimation of MetpiKi67 index of proliferation in samples from patients with diffuse large B-cell lymphoma. 150 ICB Seminar – Micro and Nanosystems in Biochemical Analysis; 2016.
  • [30] Markiewicz T, Korzynska A, Kowalski A, Swiderska-Chadaj Z, Murawski P, Grala B, et al. MIAP – Web-based platform for the computer analysis of microscopic images to support the pathological diagnosis. Biocybern Biomed Eng 2017;36:597-609.
  • [31] Korzynska A, Roszkowiak L, Lopez C, Bosch R, Witkowski L, Lejeune M. Validation of various adaptive threshold methods of segmentation applied to follicular lymphoma digital images stained with 3,30-diaminobenzidine & haematoxylin. Diagn Pathol 2013;8:48.
  • [32] Ruifrok A, Johnston D. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol 2001;23:291-9.
  • [33] Korzynska A, Neutrophils C in vitro. In: Sideman S, Landesbeurg A (Eds.), Visualization and imaging in transport phenomenon; Annu N Y Acad Sci, 972; 2002: 139-43.
  • [34] Ramsay A, Pomplun S, Wilkins B. Tissue pathways for lymph node, spleen and bone marrow trephine biopsy specimens. R Coll Pathol 2017;1–31. Available at https://www.rcpath.org/resourceLibrary/tissue-pathways- for-lymph-node–spleen-and-bone-marrow-trephine- biopsy-specimens.html. Accessed 15 Jan 2018.
  • [35] van der Loos CM. Multiple immunoenzyme staining: methods and visualizations for the observation with spectral imaging. J Histochem Cytochem 2008;56:313-28.
  • [36] Yeo MK, Kim HE, Kim SH, Chae BJ, Song BJ, Lee A. Clinical usefulness of thefree web-based image analysis application ImmunoRatio for assessment of Ki-67 labelling index in breast cancer. J Clin Pathol 2017;70:715-9.
  • [37] Mashiah A, Wolach O, Sandbank J, Uziel O, Raanani P, Lahav M. Lymphoma and leukemia cells possess fractal dimensions that correlate with their biological features. Acta Haematol 2008;119:142-50.
  • [38] Klonowski W, Stepien R, Stepien P. Simple fractal method of assessment of histological images for application in medical diagnostics. Nonlinear Biomed Phys 2010;4:7.
  • [39] http://www.indicalab.com/. Accessed online 07.08.2018.
  • [40] Brunelli M, Beccari S, Colombari R, Gobbo S, Giobelli L, Pellegrini A, et al. iPathology cockpit diagnostic station: validation according to College of American Pathologists Pathology and Laboratory Quality Center recommendation at the Hospital Trust and University of Verona. Diagn Pathol 2014;9:S12.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62556e46-6416-4e5b-9101-9120ad5b2a4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.