PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurements of Tensile Strength and Elongation of 3D Printed Polylactide Solids Produced with Different Temperatures of Extruder Using Coordinate Measuring Technique and Finite Element Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to determine the largest and smallest deformations during 3D printing, measurements were made for pure polylactide (PLA) using a coordinate measuring technique using a measuring arm. The additive manufacturing process was carried out using four nozzle temperatures: 190℃, 200℃, 210℃ and 220℃. The model was properly selected to check the cylindricity, angles of inclination and dimensional deviations from the nominal value of the cuboid. FEM analysis was used to confirm the obtained results. The cylindricity and shape tolerances were shown to be the best at 190℃. The smallest deviations from the angle of 90 ° have solids made at 200 ℃ and 220 ℃. In the case of dimensional tolerances of the centers of the holes relative to each other, the best deviations were obtained for the temperature of 190 ℃ and 220 ℃. The highest stress values during uniaxial stretching using FEM analysis were obtained for samples made with nozzle temperatures of 200°C and 210°C, which are about 31 MPa. For the temperature of 190°C and 220°C, the deviations are the closest to the reference model and are equal to about 30 MPa. In the case of the FEM analysis for single-point bending, the element made at 190°C had a maximum deformation of 0.203 mm, which was the same for the reference model. The largest deviation is noticeable for the printing temperature of 200°C and is 0.211 mm.
Twórcy
  • Cracow University of Technology
  • Cracow University of Technology
  • Cracow University of Technology
Bibliografia
  • 1. M. Augustyniak, M. Barczewski, J. Andrzejewski, Wykorzystanie współrzędnościowej techniki pomiarowej w badaniach tworzyw sztucznych, 2012: 48–51.
  • 2. P.J. Swornowski, A critical look at the coordinate measuring technique. Mechatronics, 23(1), 2013, doi: 10.1016/j.mechatronics.2012.11.002.
  • 3. M. Magdziak and R.M.C. Ratnayake, Investigation of best parameters’ combinations for coordinate measuring technique. In: Procedia CIRP, 2018. doi: 10.1016/j.procir.2018.08.173.
  • 4. M. Magdziak, An algorithm of form deviation calculation in coordinate measurements of free-form surfaces of products. Strojniski Vestnik/Journal of Mechanical Engineering, 62(1), 2016, doi: 10.5545/ sv-jme.2015.3039.
  • 5. M. Magdziak, Estimating time of coordinate measurements based on the adopted measurement strategy. Sensors, 22(19), 2022, doi: 10.3390/s22197310.
  • 6. A. Bazan, M. Magdziak, B. Jamuła, Analysis of results of non-contact coordinate measurement of a cutting tool applied for mould machining. Archives of Foundry Engineering, 22(4), 2022, doi: 10.24425/afe.2022.143960.
  • 7. M. Magdziak, Selection of the best model of distribution of measurement points in contact coordinate measurements of free-form surfaces of products. Sensors (Switzerland), 19(24), 2019, doi: 10.3390/ s19245346.
  • 8. L.A. Blunt, P.J. Bills, X.Q. Jiang, G. Chakrabarty, Improvement in the assessment of wear of total knee replacements using coordinate-measuring machine techniques. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 222(3), 2008, doi: 10.1243/09544119JEIM289.
  • 9. S. Filippi and I. Cristofolini, The design guidelines (DGLs), a knowledge-based system for industrial design developed accordingly to ISO-GPS (Geo n Engineering Design, 18(1), 2007, doi: 10.1007/ s00163-007-0026-x.
  • 10. M. Magdziak, A new method of distribution of mesurement points on curvilinear surfaces of products. Sensors (Switzerland), vol. 19, no. 12, 2019, doi: 10.3390/s19122667.
  • 11. R. Michalski, M. Wieczorowski, P. Glazowski, B. Gapiński, Analysis of the influence of support during measurement using coordinate measuring techniques. Advances in Science and Technology Research Journal, 13(4), 2019, doi: 10.12913/22998624/113608.
  • 12. D. Popescu, A. Zapciu, C. Amza, F. Baciu, R. Marinescu, FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing, 69, 2018, doi: 10.1016/j. polymertesting.2018.05.020.
  • 13. L. Kyzioł, W. Kończewicz, A. Dynowski, The analysis of the possibilities of using 3D printer for making components and parts of marine equipment for example flexible clutch coupling. Journal of Konbin, 49(3), 2019, doi: 10.2478/jok-2019-0057.
  • 14. A.D. Mazurchevici, D. Nedelcu, R. Popa, Additive manufacturing of composite materials by FDM technology: A review. Indian Journal of Engineering and Materials Sciences, 27(2), 2020.
  • 15. L.J. Tan, W. Zhu, K. Zhou, Recent progress on polymer materials for additive manufacturing. Advanced Functional Materials, 30(43), 2020. doi: 10.1002/ adfm.202003062.
  • 16. S. Brischetto and R. Torre, Tensile and compressive behavior in the experimental tests for PLA speci- mens produced via fused deposition modelling technique. Journal of Composites Science, 4(3), 2020, doi: 10.3390/jcs4030140.
  • 17. A. Mcwilliams, Advanced materials for 3D printing: technologies and global markets. BCC Research studies. 2014.
  • 18. 3D Printing, What is 3D printing? How does a 3D printer work? Learn 3D printing. 3DPrinting.com, 2019.
  • 19. K. Bryll, E. Piesowicz, P. Szymański, W. Slaczka, M. Pijanowski, Polymer composite manufacturing by FDM 3D printing technology. In: MATEC Web of Conferences, 2018. doi: 10.1051/ matecconf/201823702006.
  • 20. L. Fontana, P. Minetola, L. Iuliano, S. Rifuggiato, M. S. Khandpur, V. Stiuso, An investigation of the influence of 3d printing parameters on the tensile strength of PLA material. Materials Today: Proceedings, 57, 2022, doi: 10.1016/j.matpr.2022.02.078.
  • 21. R. Hashemi Sanatgar, C. Campagne, V. Nierstrasz, Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Applied Surface Science, 403, 2017, doi: 10.1016/j. apsusc.2017.01.112.
  • 22. S. Abu Aldam, M. Dey, S. Javaid, Y. Ji, S. Gupta, On the Synthesis and Characterization of Polylactic Acid, Polyhydroxyalkanoate, Cellulose Acetate, and Their Engineered Blends by Solvent Casting. Journal of Materials Engineering and Performance, 29(9), 2020, doi: 10.1007/s11665-020-04594-3.
  • 23. A. Gaweł and S. Kuciel, The study of physico-mechanical properties of polylactide composites with different level of infill produced by the fdm method. Polymers, 12(12), 2020, doi: 10.3390/polym12123056.
  • 24. G. Li et al., Synthesis and Biological Application of Polylactic Acid. Molecules (Basel, Switzerland), 25(21), 2020. doi: 10.3390/molecules25215023.
  • 25. S. Prabhu, M. Uma, J. Jaishwin, M. Nikhil, Experimental Study and Predictive Modelling of Fused Deposition Modelling (FDM) Using TOPSIS and Fuzzy Logic Expert System. International Journal of Automotive and Mechanical Engineering, 20(1), 2023, doi: 10.15282/ijame.20.1.2023.03.0788.
  • 26. P. Turek and G. Budzik, Estimating the accuracy of mandible anatomical models manufactured using material extrusion methods. Polymers, 13(4), 2021, doi: 10.3390/polym13142271.
  • 27. V. Queral, E. Rincón, V. Mirones, L. Rios, S. Cabrera, Dimensional accuracy of additively manufactured structures for modular coil windings of stellarators. Fusion Engineering and Design, 124, 2017, doi: 10.1016/j.fusengdes.2016.12.014.
  • 28. V. Queral, S. Cabrera, E. Rincon, V. Mirones, Prospects for stellarators based on additive manufacturing: Coil frame accuracy and vacuum vessels. IEEE Transactions on Plasma Science, 46(5), 2018, doi: 10.1109/TPS.2018.2790168.
  • 29. J. Pisula, G. Budzik, P. Turek, M. Cieplak, An analysis of polymer gear wear in a spur gear train made using fdm and fff methods based on tooth Surface topography assessment. Polymers, 13(10), 2021, doi: 10.3390/polym13101649metrical Product Specifications) concepts. Research
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62507a60-1504-4167-b856-236e07434a1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.