Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article deals with green investment focused on urban public transport. This work presents a holistic approach to evaluating investments in electric and CNG buses, i.e., the economic efficiency assessment, including the risk aspect. The investment project is assessed in terms of the source of funding and risk factors affecting the profitability of the project. A non-repayable subsidy from the European Social Fund in the amount of 0%, 25%, 50% and 90% of investment costs is considered. Economic efficiency is assessed in terms of profitability through the financial criterion Net Present Value (NPV) and risk using mean NPV and standard deviation. The result of the evaluation of the variants of the investment project is that the investment project without the support of non-repayable resources is loss-making. With a low level of financial support, it is more economical to procure CNG buses. With a higher level of financial support, investments in electric buses are more profitable, due to lower operating costs
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
96--105
Opis fizyczny
Bibliogr. 23 poz., fig., tab.
Twórcy
autor
- Faculty of Mining, Ecology, Process Control and Geotechnology, Technical University of Kosice, Letná 9, Košice, Slovakia
autor
- Faculty of Mechanical Engineering, Technical University of Kosice, Letná 9, Košice, Slovakia
Bibliografia
- 1. Echeverri G.L. Investing for rapid decarbonization in cities. Curr Opin Environ Sustain. 2018; 30: 42–51.
- 2. Saunila M., Ukko J., Rantala T. Sustainability as a driver of green innovation investment and exploitation. J Clean Prod. 2018; 179: 631–641.
- 3. European Commision. Transport and the Green Deal | European Commission, https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/transport-and-green-deal_en (2019, accessed 28 January 2022)
- 4. Liu Q., Hallquist Å.M., Fallgren H., et al. Roadside assessment of a modern city bus fleet: Gaseous and particle emissions. Atmos Environ X. 2019; 3: 100044.
- 5. Zawieska J., Pieriegud J. Smart city as a tool for sustainable mobility and transport decarbonisation. Transp Policy. 2018; 63: 39–50.
- 6. Lefèvre J., Briand Y., Pye S., et al. A pathway design framework for sectoral deep decarbonization: the case of passenger transportation. Clim Policy. 2021; 21: 93–106.
- 7. Vilke S., Tadic F., Ostović I., et al. The use of hydrogen as an alternative fuel in urban transport. Pomorstvo. 2020; 34: 376–386.
- 8. Deliali A., Chhan D., Oliver J., et al. Transitioning to zero-emission bus fleets: state of practice of implementations in the United States. Transp Rev. 2021; 41: 164–191.
- 9. Hensher D.A., Wei E., Balbontin C. Comparative assessment of zero emission electric and hydrogen buses in Australia. Transp Res Part D Transp Environ. 2022; 102: 103130.
- 10. Kumbaroǧlu G., Canaz C., Deason J., et al. Profitable Decarbonization through E-Mobility. Energies. 2020; 13: 4042.
- 11. Zhang R., Zhang J., Long Y., et al. Long-term implications of electric vehicle penetration in urban decarbonization scenarios: An integrated land use–transport–energy model. Sustain Cities Soc. 2021; 68: 102800.
- 12. Gabsalikhova L., Sadygova G., Almetova Z. Activities to convert the public transport fleet to electric buses. Transp Res Procedia. 2018; 36: 669–675.
- 13. Zhang R., Zhang J. Long-term pathways to deep decarbonization of the transport sector in the post-COVID world. Transp Policy. 2021; 110: 28–36.
- 14. Golightly D., Gamble C., Palacin R., et al. Multi-modelling for Decarbonisation in Urban Rail Systems. Urban Rail Transit. 2019; 5: 254–266.
- 15. Bompard E., Grosso D., Huang T., et al. World decarbonization through global electricity interconnections. Energies; 11. Epub ahead of print 2018. DOI: 10.3390/EN11071746.
- 16. Emiliano M.W., Costa L., Carvalho S.M., et al. Multiobjective optimization of transit bus fleets with alternative fuel options: The case of Joinville, Brazil. Int J Sustain Transp. 2019; 14: 14–24.
- 17. Chiriac G., Lucache D.D., Nituca C., et al. Aspects Regarding the Heating of Electric Buses. SIELMEN 2021 – Proc 11th Int Conf Electromechanical Energy Syst. 2021; 481–486.
- 18. Deveci M., Torkayesh A.E. Charging Type Selection for Electric Buses Using Interval-Valued Neutrosophic Decision Support Model. IEEE Trans Eng Manag. Epub ahead of print 2021. DOI: 10.1109/TEM.2021.3108062.
- 19. Bartłomiejczyk M., Połom M. Dynamic Charging of Electric Buses as a Way to Reduce Investment Risks of Urban Transport System Electrification. In: International Conference TRANSBALTICA: Transportation Science and Technology. Springer, Cham 2020, 297–308.
- 20. Lotfi M., Pereira P., Paterakis N.G., et al. Optimal Design of Electric Bus Transport Systems With Minimal Total Ownership Cost. IEEE Access. 2020; 8: 119184–119199.
- 21. Topal O., Nakir İ. Total Cost of Ownership Based Economic Analysis of Diesel, CNG and Electric Bus Concepts for the Public Transport in Istanbul City. Energies. 2018; 11: 2369.
- 22. Göhlich D., Nagel K., Syré A.M., et al. Integrated Approach for the Assessment of Strategies for the Decarbonization of Urban Traffic. Sustainability. 2021; 13: 839.
- 23. Teoh T., Kunze O., Teo C.C., et al. Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging. Sustainability. 2018; 10: 3258.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-624f3662-6dfb-477c-9054-ce0df0d6238a