PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transparent conductive nanocomposite layers with polymer matrix and silver nanowires reinforcement

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The article deals with one of the completely new groups of composite inorganic nanostructured materials used in the form of surface layers, characterised by unique properties, such as transparency over 84.4% in the field of visible light waves, anti-reflective and electrical properties comparable to semiconductors. Design/methodology/approach: A technology for producing such layers containing not less than 5% of silver nanowires by mixing a colloid containing silver nanowires from fragmented agglomerates by ultrasound homogeniser with the polymer dissolved in chloroform with good bonding to the polymer matrix and of good quality was developed. Findings: It was shown that increasing the content of silver nanowires to 30% in composite layers causes an increase in the refractive coefficient from 1.9 to 2.2 and a decrease in light transmission from 88.1 to 81.9% and a decrease in the value of light reflection from 11.1% up to 6.7%. With an increased content of silver nanowires, these layers show better electrical properties, and the width of the energy gap is reduced from 3.93 eV to 1.60 eV. Composite layers with a mass fraction greater than 5% of silver nanowires show properties analogous to semiconductors despite the metallic nature of their conductivity. Research limitations/implications: The use of silver nanowires as a reinforcement of transparent nanocomposite layers with a poly(methyl methacrylate) PMMA matrix improves selected optical and electrical properties as a result of the uniform distribution of the reinforcing phase in the matrix material. Originality/value: The influence of the content of silver nanowires, layering conditions, applied methods of dispersing silver nanowires in the matrix material on the structure and properties of newly developed nanocomposite layers was determined.
Rocznik
Strony
59--84
Opis fizyczny
Bibliogr. 62 poz.
Twórcy
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS Ltd, Science Centre, ul. Królowej Bony 13 D, 44-100 Gliwice, Poland
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS Ltd, Science Centre, ul. Królowej Bony 13 D, 44-100 Gliwice, Poland
Bibliografia
  • [1] A.R. Madaria, A. Kumar, C. Zhou, Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens, Nanotechnology 22/24 (2011) 245201, DOI: doi.org/10.1088/0957-4484/22/24/ 245201.
  • [2] W. Gaynor, G.F. Burkhard, M.D. McGehee, P. Peumans, Smooth Nanowire/Polymer Composite Transparent Electrodes, Advanced Materials 23/26 (2011) 2905-2910, DOI: https://doi.org/10.1002/ adma.201100566.
  • [3] X. Xingyu, W. Yuanhao, Wangshujuna, L. Lin, Antimony doped tin oxide/multi-walled carbon nanotubes: highly near-infrared blocking coating used for heat conservation windows, Energy Procedia 105 (2017) 4836-4841, DOI: https://doi.org/10.1016/ j.egypro.2017.03.958.
  • [4] M. Thirumoorthi, J.T.J. Prakash, Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique, Journal of Asian Ceramic Societies 4 (2016) 124-132, DOI: 10.1016/j.jascer.2016.01.001.
  • [5] K. Sakamoto, H. Kuwae, N. Kobayashi, A. Nobori, S. Shoji, J. Mizuno, Highly flexible transparent electrodes based on meshpattemed rigid indium tin oxide, Scientific Reports 8 (2018) 2825. DOI: 10.1038/s41598-018-20978-x.
  • [6] J.A. Hernandez, J. Carpena-Nunez, L.F. Fonseca, M.T. Pettes, M.J. Yacaman, A. Benitez, Thermoelectric properties and thermal tolerance of indium tin oxide nanowires, Nanotechnology 29/36 (2018) 364001, DOI: 10.1088/1361-6528/aaccd3.
  • [7] D.P. Tran, H.I. Lu, C.K. Lin, Conductive Characteristics of Indium Tin Oxide Thin Film on Polymeric Substrate under Long-Term Static Deformation, Coatings 8 (2018) 212, DOI: 10.1088/1361-6528/aaccd3.
  • [8] L. Zhang, J. Wu, F. Chen, X. Li, J.M. Schoenung, Q. Shen, Spark plasma sintering of antimony-doped tin oxide ATO nanoceramics with high density and enhanced electrical conductivity, Journal of Asian Ceramic Societies 1 (2013) 114-119, DOI: 10.1016/ j.jascer.2013.03.010.
  • [9] B. Schümm, T. Abendroth, S.A. Alajlan, A.M. Almogbel, H. Althues, P. Härtel, G. Mäder, S. Kaskel, Combination of Zinc Oxide and Antimony Doped Tin Oxide Nanocoatings for Glazing Application, Coatings 8 (2018) 248, DOI: 10.3390/coatings 8070248.
  • [10] Z. Khakpour, H. Pourfarahani, A. Maghsoudipour, T. Ebadzadeh, Synthesis and deposition of hematite nanoparticles on Fluorine - doped Tin Oxide FTO glass substrates, Materials Today: Proceedings 5 (2018) 15828-15835, DOI: 10.1016/j.matpr. 2018.05.081.
  • [11] F.I. Chowdhury, T. Blaine, A.B. Gougam, Optical transmission enhancement of Fluorine doped Tin Oxide FTO on glass for thin film photovoltaic applications, Energy Procedia 42 (2013) 660-669, DOI: 10.1016/j.egypro.2013.11.068.
  • [12] M. Vanmathi, I. Mohamed, S.K. Marikkannan, M. Venkateswarlu, Synthesis And Electrical Characterization Of Aluminium Doped Zinc Oxide Thin Films, Journal of Ovonic Research 13/6 (2017) 345-349.
  • [13] J.S. Eensalu, M. Krunks, I. Gromyko, A. Katerski, A. Mere, A comparative study on physical properties of Al-doped zinc oxide thin films deposited from zinc acetate and zinc acetylacetonate by spray pyrolysis, Energetika 63/2 (2017) 46-55, DOI: 10.6001/ energetika.v63i2.3519.
  • [14] H. Munawaroh, S. Wahyuningsih, A.H. Ramelan, Synthesis and Characterization of A1 doped ZnO AZO by Sol-gel Method, IOP Conference Series: Materials Science and Engineering 176/conference 1 (2017) 012049, DOI: 10.108 8/1757-899X/176/1/ 012049.
  • [15] K. Zhu, Y. Yang, J. Li, W. Song, Physical Properties of Al-doped ZnO and Ga-doped ZnO Thin Films Prepared by Direct Current Sputtering at Room Temperature, Journal of Wuhan University of Technology - Materials Science Edition 32/1 (2017) 85-88, DOI: 10.1007/sll595-017-1563-4.
  • [16] A. Chandra, L.S. Tumg, P. Gopalan, R.M. Rowell, S. Gong, Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties, Composites Science and Technology 68/3-4 (2008) 768-776, DOI: https://doi.Org/10.1016/j.compscitech.2007.08.027.
  • [17] L.A. Dobrzanski, I. Czaja, Effect of nanowires and nanoparticles of copper on the structure and properties of the nanocomposite polymeric materials, Archives of Materials Science and Engineering 75/1 (2015) 18-29.
  • [18] B. Nieradka-Buczek (Supervisor: L.A. Dobrzanski), Application of silver nanowires as a reinforcement of transparent nanocomposite layers, PhD thesis, Silesian University of Technology, Gliwice, 2018 (in Polish).
  • [19] R. Gangopadhyay, D. Amitabha, Conducting polymer nanocomposites: A brief overview, Chemistry of Materials 12/7 (2000) 608-622, DOI: 10.1021/cm990537f.
  • [20] S. Anandhan, S. Bandyopadhyay, Polymer Nanocomposites: From Synthesis to Applications, in: J. Cuppoletti (Ed.), Nanocomposites and Polymers with Analytical Methods, InTech, 2011, DOI: 10.5772/17039.
  • [21] V. Mittal (Ed.), Characterization Techniques for Polymer Nanocomposites, WILEY-VCH, Germany, 2012.
  • [22] J.W. Gardner, P.N. Bartlett, Application of conducting polymer technology in microsystem, Sensors and Actuators A 51/1 (1995) 57-66, DOI: https://doi.org/ 10.1016/0924-4247(95)85004-X.
  • [23] L.A. Dobrzanski, Metals and Alloys, Open Access Library Annal VII(2), 2017, 1-982 (in Polish).
  • [24] R.A. Vaia, H.D. Wagner, Framework for nano¬composites, Materials Today 7/11 (2004) 32-37, DOI: https://doi.org/10.1016/S1369-7021 (04)00506-1.
  • [25] L. Nicole, C. Laberty-Robert, L. Rozes, C. Sanchez, Hybrid materials science. A promised land for the integrative design of multifunctional materials, Nanoscale 6/12 (2014) 6267-6292, DOI: 10.1039/ C4NR01788A.
  • [26] M. Kwiatkowska, G. Broza, J. M^cfel, T. Sterzynski, Z. Roslaniec, Preparation and characterization of polimer nanocomposites PBT/carbon nanotubes, Composites 5/2 (2005) 99-104 (in Polish).
  • [27] R.W. Kelsall, J.W. Hamley, M. Geoghegan, Nanotechnologies, 2008.
  • [28] T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A.M. Seifalian, Biological applications of quantum dots, Biomaterials 28/31 (2007) 4717¬4732, DOI: https://doi.Org/10.1016/j.biomaterials. 2007.07.014.
  • [29] A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26/18 (2005) 3995-4021, DOI: https://doi.org/10.1016/ j.biomaterials.2004.10. 012.
  • [30] R. Rai, J. Bai, Nanoparticles and their potential application as antimicrobials, in: A. Mendez-Vilas (Ed.), Science against microbial pathogens: communicating current research and technological advances, 2011, 197-209.
  • [31] C. Sanchez, B. Julian, P. Belleville, M. Popali, Applications of hybrid organic-inorganic nano¬composites, Journal of Materials Chemistry 15/35-36 (2005) 3559-3592, DOI: 10.1039/B509097K.
  • [32] J. Barton, A. Niemczyk, K. Czaja, Ł. Korach, B. Sacher-Majewska, Composities, biocomposities and polimer nanocomposities, Chemist 68/4 (2014) 280¬287 (in Polish).
  • [33] Y.K. Tseng, M.H. Chuang, Y.C. Chen, C.H. Wu, Synthesis of ID; 2D; and 3D ZnO Polycrystalline Nanostructures Using the Sol-Gel Method, Journal of Nanotechnology 2012 (2012) Article ID: 712850, DOI: http://dx.doi.org/10.U55/2012/712850.
  • [34] Y. Sun, Y.N. Xia, Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process, Advanced Materials 14/11 (2002) 833-837, DOI: https://doi.org/10.1002/1521-4095(20020605) 14:11<833::AID-ADMA833>3.0.CO;2-K.
  • [35] A.D. Dobrzańska-Danikiewicz, D. Cichocki, D. Łukowiec, W. Wolany, Carbon nanotubes synthesis time versus their layer height, Archives of Materials Science and Engineering 69/1 (2014) 5-11.
  • [36] P. Hiemenz, R. Rajagopalan, Principles of colloid and surface chemistry, Marcel Dekker Inc., New York, USA, 1997.
  • [37] L.M. Manocha, J. Valand, N. Patel, A. Warrier, S. Manocha, Nanocomposites for structural applications, Indian Journal of Pure and Applied Physics 44/2 (2006) 135-142.
  • [38] J. Lee, P. Lee, H. Lee, D. Lee, S.S. Lee, S.H. Ko, Very long Ag nanowire synthesis and its application in a highly transparent; conductive and flexible metal electrode touch panel, Nanoscale 4/20 (2012) 6408¬6414, DOI: 10.1039/C2NR31254A.
  • [39] M.A. Osman, J.E.P. Rupp, U.W. Suter, Effect of non-ionic surfactants on the exfoliation and properties of polyethylene-layered silicate nano¬composites, Polymer 46/19 (2005) 8202-8209, DOI: https://doi.Org/10.1016/j.polymer.2005.06.101.
  • [40] W.J. Work, K. Horie, M. Hess, R.F.T. Stepto, Definition of terms related to polymer blends; composites and multiphase polymeric materials, Pure and Applied Chemistry76/ll (2004) 1985-2007, DOI: https://doi.org/10.1351/pac200476111985.
  • [41] S. Turri, L. Torlaj, F. Piccinini, M. Levi, Abrasion and nanoscratch in nanostructured epoxy coatings, Journal of Applied Polymer Science 118/3 (2010) 1720-1727, DOI: https://doi.org/10.1002/app.32309.
  • [42] L.A. Dobrzański, B. Nieradka-Buczek, Obtaining copper nanoparticles from nanocomposites of polyvinyl alcohol matrix, Journal of Achievements in Materials and Manufacturing Engineering 72/2 (2015) 85-92.
  • [43] A. Khalil, B. Singh, R. Hashaikeh, M. Khraisheh, Electrospun metallic nanowires: Synthesis; characterization; and Applications, Journal of Applied Physics 114 (2013) 171301, DOI: https://doi.org/ 10.1063/1.4822482.
  • [44] H. Wu, R. Zhang, X. Liu, D. Lin, W. Pan, Electrospinning of Fe; Co; and Ni Nanofibers: Synthesis, Assembly and Magnetic Properties, Chemistry of Materials 19/14 (2007) 3506-3511, DOI: 10.1021/cm070280i.
  • [45] P. Peng, H. Huang, A. Hu, A.P. Gerlich, Y.N. Zhou, Functionalization of silver nanowire surfaces with copper oxide for Surface-enhanced Raman spectroscopic bio-sensing, Journal of Materials Chemistry 22/31 (2012) 15495-15499, DOI: 10.1039/ C2JM33158F.
  • [46] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Materials surface engineering; Compendium of knowledge and academic textbook, Open Access Library Annal VIII(l), 2018, 1-1138 (in Polish).
  • [47] D.A. Dinh, K.N. Hui, K.S. Hui, P. Kumar, J. Singh, Silver Nanowires: A promising transparent conducting electrode material for optoelectronic and electronic applications, Reviews in Advanced Sciences and Engineering 2/4 (2013) 324-345, DOI: 10.1166/rase.2013.1048}.
  • [48] M. Jin, X. Zhang, S. Nishimoto, Z. Liu, D.A. Tryk, T. Murakami, A. Fujishima, Large-scale fabrication of Ag nanoparticles in PVP nanofibres andmnet-like silver nanofibre films by electrospinning, Nanotechnology 18/8 (2007) 075605, DOI: 10.1088/0957-4484/18/7/075605.
  • [49] L.A. Dobrzański, A. Wierzbicka, A. Drygała, K. Lukaszkowicz, Influence of carbon nanotubes on properties of dye-sensitised solar cells, Archives of Materials Science and Engineering 74/1 (2015) 32-44.
  • [50] A. Drygała, L.A. Dobrzański, M. Szindler, M. Prokopiuk vel Prokopowicz, M. Pawlyta, K. Lukaszkowicz, Counter electrode for dye-sensitized solar cells application, Archives of Metallurgy and Materials 61/2 (2016) 803-806, DOI: 10.1515/amm- 2016-0135.
  • [51] L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells, Applied Physics Letters 91/23 (2007) 233117, DOI: https://doi.org/10.1063/1.2821113.
  • [52] L.A. Dobrzański, M. Prokopiuk vel Prokopowicz, The influence of reduced graphene oxide on the structure of the electrodes and the properties of dye- sensitized solar cells, Archives of Materials Science and Engineering 77/1 (2016) 12-30, DOI: 10.5604/ 18972764.1224006.
  • [53] K. Lukaszkowicz, M. Szindler, A. Drygała, L.A. Dobrzański, M. Prokopiuk vel Prokopowicz, I. Pasternak, A. Przewloką, M.M. Szindler, M. Domański, Graphene-based layers deposited onto flexible substrates: Used in dye-sensitized solar cells as counter electrodes, Applied Surface Science 424/2 (2017) 157-163, DOI: 10.1016/j.apsusc.2017.02.040.
  • [54] K. Lukaszkowicz, M. Pawlyta, I. Pasternak, L.A. Dobrzański, M. Prokopiuk vel Prokopowicz, M. Szindler, A. Drygała, J. Sitek, Characterisation of graphene-based layers for dye-sensitised solar cells application, Surface Engineering 32/11 (2016) 816-822, DOI: https://doi.org/10.1080/02670844.2016. 1164276.
  • [55] T. Ohgai, Magnetoresistance of nanowires electro¬deposited into anodized aluminum oxide nano¬channels, in: X. Peng (Ed.), Nanowires - Recent Advances, InTech, 2012, DOI: 10.5772/52606.
  • [56] M.S. Dresselhaus, Y.M. Lin, O. Rabin, M.R. Black, G. Dresselhaus, Nanowires, USA, 2003.
  • [57] J. Sitek, B. Nieradka-Buczek, L.A. Dobrzański, Productions methods and the use of silver nanowires, PSKN 42 (2015) 85-94 (in Polish).
  • [58] T. Hayashi, M. Endo, Carbon nanotubes as structural material and their application in composites, Composites Part B: Engineering 42/8 (2011) 2151- 2157, DOI: https://doi.Org/10.1016/j.compositesb. 2011.05.011.
  • [59] C.T. Kingston, B. Simard, Fabrication of carbon nanotubes, Analytical Letters 36/15 (2003) 3119¬3145, DOI: 10.1081/AL-120026564.
  • [60] I.Y. Jeon, J.B. Baek, Nanocomposites derived from polymers and inorganic nanoparticles, Materials 3/6 (2010) 3654-3674, DOI: 10.3390/ma3063654.
  • [61] A.D. Dobrzanska-Danikiewicz, Methodology of computer-integrated prediction of development of materials surface engineering, Open Access Library 1/7 (2012) 1-289 (in Polish).
  • [62] A.D. Dobrzanska-Danikiewicz, Book of critical technology formation of the structure and properties of the surface of engineering materials, Open Access Library 8 (2013) 1-823 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-624811ee-9d3d-4fa5-b29c-c93abb35fa65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.