PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of number of grains and boundary conditions on digital material representation deformation under plane strain

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal of this paper is to investigate the digital material representation of a single-phase polycrystalline unit cell. Particular attention is put on the amount of grains in the microstructure, which can be considered as the representative volume element of a sample subjected to plastic deformation conditions. Additionally, the influences of the periodic and non-periodic boundary conditions on deformation behavior of the unit cells are evaluated. Possibility of the application of periodic boundary conditions on the non-periodic unit cells using a buffer zone approach is also discussed. Obtained results of equivalent strains and reaction force on case studies are presented.
Rocznik
Strony
360--369
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
  • GH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] O.N. Senkov, D.B. Miracle, S.A. Firstov, Metallic materials with high structural efficiency, NATO science series - mathematics, Physics & Chemistry (2003) 146.
  • [2] I.M. Gitman, H. Askes, L.J. Sluys, Representative volume: existence and size determination, Engineering Fracture Mechanics 74 (2007) 2518-2534.
  • [3] Z. Hashin, Analysis of composite materials - a survey, Journal of Applied Mechanics 50 (1983) 481-505.
  • [4] D. Brands, J. Schroder, D. Balzani, Statistically similar reconstruction of dual-phase steel microstructures for engineering applications, in: Proceedings of the Computer Methods in Mechanics Conference, 2011.
  • [5] D. Brands, J. Schroder, D. Balzani, FE2-Simulation of microheterogeneous steels based on statistically similar RVEs, in: Proceedings of the IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, IUTAM Bookseries 21, doi:10.1007/978-90-481-9195- 6_2.
  • [6] Ł. Rauch, M. Pemach, K. Bzowski, M. Pietrzyk, On application of shape coefficients to creation of the statistically similar representative element of DP steels, Computer Methods in Materials Science 11 (2011) 331-341.
  • [7] D. Ivanov, S. Ivanov, S. Lomov, I. Verpoest, Strain mapping analysis of textile composites, Optic and Lasers in Engineering 47 (2009) 360-370.
  • [8] B. Piezel, B.C.N. Mercatoris, W. Trabelsi, L. Laiarinandrasana, A. Thionnet, TJ- Massart, Bending effect on the risk for delamination at the reinforcement/matrix interface of 3D woven fabric composite using a shell-like RVE, Composite Structures 94 (2012) 2343-2357.
  • [9] E.I. Saavedra Flores, M.S. Murugan, M.I. Friswell, E.A. de Souza, Multi-scale constitutive model for a wood-inspired composite, Procedia Engineering 10 (2011) 3616-3621.
  • [10] Y. Xue, B. Bode, A. Briickner-Foit, Micromechanical simulation for texture induced uncertainty in fatigue damage incubation using crystal plasticity model, Procedia Engineering 2 (2010) 1787-1793.
  • [11] L. Madej, L. Rauch, K. Perzyński, P. Cybulka, Digital material representation as an efficient tool for strain inhomogeneities analysis at the micro scale level, Archives of Civil and Mechanical Engineering 11 (2011) 661-679.
  • [12] F. Larsson, K. Runesson, S. Saroukhani, R. Vafadari, Computational homogenization based on a weak format of micro-periodicity for RVE-problems, Computer Methods in Applied Mechanics and Engineering 200 (2011) 11-26.
  • [13] A. Różański, D. Łydżba, From digital image of microstructure to the size of representative volume element: B4C/A1 composite, Studia Geotechnica et Mechanica 33 (2011) 55-68. J.
  • [14] Zeman, M. Sejnoha, From random microstructures to representative volume elements, Modeling and Simulation in Materials Science and Engineering 15 (2007) 325-335.
  • [15] C. Liu, On the minimum size of representative volume element (RVE). Materials Science & Technology Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545, USA.
  • [16] I. Simonovski, L. Cizelj, Representative volume element size of a polycrystalline aggregate with embedded Short Crack, in: Proceedings of the International Conference Nuclear Energy for New Europe 2007, Portoroz, Slovenia, 2007, pp. 0906.1- 0906.8.
  • [17] F. El Houdaigui, S. Forest, A.-F. Gourgues, D. Jeulin, Representative Volume Element sizes for copper bulk polycrystals and thin layers. Colloque 3 M Mat'eriaux, M'ecanique, Microstructures, sur le th'eme Interfaces: de l'atome au polycristal, 'edit'e par O. Hardouin Duparc, CEA Saclay, INSTN, 2006, pp. 141-153.
  • [18] B.M. Schroeter, D.L. McDowell, Measurement of deformation fields in polycrystalline OFHC copper? International Journal of Placticity 19 (2003) 1355-1376.
  • [19] C. Efstathiou, H. Sehitoglu, J. Lambros, Multiscale strain measurements of plastically deforming polycrystalline titanium: role of deformation heterogeneities, International Journal of Plasticity 26 (2010) 93-106.
  • [20] C.R. Myers, S.R. Arwade, E. Iesulauro, P.A. Wawrzynek, M. Grigoriu, A.R. Ingraffea, P.R. Dawson, M.P. Miller, J.P. Sethna, Digital Material: A Framework for Multiscale Modeling of Defects in Solids, in: MRS Proceedings, vol. 538, 1998.
  • [21] J. Cao, J. Lin, Development of a VGRAIN system for CPFE analysis in micro-forming applications, International Journal of Advanced Manufacturing Technology 47 (2010) 981-991.
  • [22] S. Case, Y. Horie, Discrete element simulation of shock wave propagation in polycrystalline copper, Journal of Mechanics and Physics of Solids 55 (2007) 589-614.
  • [23] L. Madej, Digital material representation of polycrystals in application to numerical simulations of inhomogenous deformation, Computer Methods in Material Science 10 (3) 143-155.
  • [24] S.I. Ranganathan, M. Ostoja-Starzewski, Scaling function, anisotropy and the size of RVE in elastic random polycrystals, Journal of the Mechanics and Physics of Solids 56 (2008) 2773-2791.
  • [25] M. Boudifa, K. Saanouni, J.-L. Chaboche, A micromechanical model for inelastic ductile damage prediction in polycrystalline metals for metal forming, International Journal of Mechanical Sciences 51 (2009) 453-64.
  • [26] L. Madej, Development of the Modelling Strategy for the Strain Localization Simulation Based on the Digital Material Representation, AGH University of Science and Technology Press, Krakow, 2010.
  • [27] L. Madej, L. Rauch, C. Yang, Strain distribution analysis based on the digital material representation, Archives of Metallurgy and Materials 54 (2009) 499-507.
  • [28] L. Madej, F. Kruzel, P. Cybulka, K. Perzynski, K. Banas, Generation of dedicated finie element meches for multiscale applications with delaunay triangulation and adaptative finie element - cellular automata algorithms, Computer Methods in Material Science 12 (2) (2012) 85-96.
  • [29] A. Asgari, C.H. Yang, P.D. Hodgson, B.F. Rolfe, Modeling of advanced high strength steels with the realistic microstructure-strength relationships, Computational Materials Science 45 (4) (2009) 860-866.
  • [30] K. Perzynski, L. Madej, Numerical analysis of influence of the martensite volume fraction on DP steels behavior during plastic deformation, Archives of Metallurgy and Materials 58 (2013) 211-215.
  • [31] H. Qing, Automatic generation of 2D micromechanical finite element model of silicon-carbide/aluminum metal matrix composites: effects of the boundary conditions, Materials and Design 44 (2013) 446-153.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6244b4f7-d972-4c3f-8c11-fa5b7580330c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.