Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the first n steps of a two-state (success and failure) Markov chain, the longest success run L(n) has been attracting considerable attention due to its various applications. In this paper, we study L(n) in terms of its two closely connected properties: moment generating function and large deviations. This study generalizes several existing results in the literature, and also finds an application in statistical inference. Our metod on the moment generating function is based on a global estimate of the cumulative distribution function of L(n) proposed in this paper, and the proofs of the large deviations include the Gärtner-Ellis theorem and the moment generating function.
Czasopismo
Rocznik
Tom
Strony
407--428
Opis fizyczny
Bibliogr. 14 poz., tab.
Twórcy
autor
- Department of Mathematics, Linköping University, 581 83 Linköping, Sweden
autor
- Department of Mathematics, Linköping University, 581 83 Linköping, Sweden
Bibliografia
- [1] N. Balakrishnan and M. V. Koutras, Runs and Scans with Applications, Wiley, New York 2002.
- [2] E. J. Bedrick and J. Aragón, Approximate confidence intervals for the parameters of a stationary binary Markov chain, Technometrics 31 (4) (1989), pp. 437-448.
- [3] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, corrected reprint of the second (1998) edition, Springer, Berlin 2010.
- [4] P. Erdős and A. Rényi, On a new law of large numbers, J. Anal. Math. 23 (1970), pp. 103-111.
- [5] P. Erdős and P. Révész, On the length of the longest head-run, in: Topics in Information Theory, I. Csiszár and P. Elias (Eds.), Colloq. Math. Soc. János Bolyai 16 (1975), pp. 219-228.
- [6] S. Eryilmaz, Some results associated with the longest run statistic in a sequence of Markov dependent trials, Appl. Math. Comput. 175 (1) (2006), pp. 119-130.
- [7] J. C. Fu, L. Wang, and W. Y. W. Lou, On exact and large deviation approximation for the distribution of the longest run in a sequence of two-state Markov dependent trials, J. Appl. Probab. 40 (2) (2003), pp. 346-360.
- [8] L. Holst and T. Konstantopoulos, Runs in coin tossing: A general approach for deriving distributions for functionals, J. Appl. Probab. 52 (3) (2015), pp. 752-770.
- [9] T. Konstantopoulos, Z. Liu, and X. Yang, Laplace transform asymptotics and large deviation principles for longest success runs in Bernoulli trials, J. Appl. Probab. 53 (3) (2016), pp. 747-764.
- [10] Z. Liu and X. Yang, A general large deviation principle for longest runs, Statist. Probab. Lett. 110 (2016), pp. 128-132.
- [11] Y. Mao, F. Wang, and X. Wu, Large deviation behavior for the longest head run in an IID Bernoulli sequence, J. Theoret. Probab. 28 (1) (2015), pp. 259-268.
- [12] A. Rényi, Foundations of Probability, Holden-Day, San Francisco 1970.
- [13] R. E. Young and A. L. Sweet, Confidence intervals for transition probabilities in two-state Markov chains. I, Comm. Statist. A-Theory Methods 11 (2) (1982), pp. 165-179.
- [14] Y. Z. Zhang and X. Y. Wu, Some results associated with the longest run in a strongly ergodic Markov chain, Acta Math. Sin. (Engl. Ser.) 29 (10) (2013), pp. 1939-1948.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6242e5a5-1330-429a-afc4-4ee06999e514