PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Extended finite element numerical analysis of scale effect in notched glass fiber reinforced epoxy composite

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Rozszerzona analiza numeryczna metodą elementów skończonych efektu skali w epoksydowym kompozycie z karbem wzmocnionym włóknem szklanym
Języki publikacji
EN
Abstrakty
EN
Nominal strength reduction in cross ply laminates of [0/90]2s is observed in tensile tests of glass fiber composite laminates having central open hole of diameters varying from 2 to 10 mm. This is well known as the size effect. The extended finite element method (XFEM) is implemented to simulate the fracture process and size effect (scale effect) in the glass fiber reinforced polymer laminates weakened by holes or notches. The analysis shows that XFEM results are in good agreement with the experimental results specifying nominal strength and in good agreement with the analytical results based on the cohesive zone model specifying crack opening displacement and the fracture process zone length.
PL
Zmniejszenie nominalnej wytrzymałości laminatu warstwowego z poprzecznym ułożeniem włókien typu [0/90]2s jest obserwowane dla naprężeń rozciągających w laminatach kompozytowych z włóknem szklanym mających centralny otwór o średnicy od 2 do 10 mm. Jest to dobrze znany efekt rozmiaru (efekt skali). Rozszerzona analiza metodą elementów skończonych (XFEM) została zastosowana w celu symulacji procesu pękania i efektu skali w polimerowych laminatach z włóknem szklanym osłabionych obecnością karbu lub otworu. W pracy wykazano, że wyniki metody XFEM dotyczące wytrzymałości nominalnej są zgodne z danymi eksperymentalnymi, dobrze zgadzają sią z wynikami analitycznymi opartymi na modelu strefy spójnej i pozwalają określić przemieszczenie otworu szczeliny i długość strefy procesu pęknięcia.
Rocznik
Strony
217--236
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena, Egypt, 83521
  • Mechanical Engineering Dept., College of Engineering and Islamic Architecture, Umm Al-Qura University, KSA
autor
  • Production Engineering and design Department, Faculty of Engineering, Minia Universities, Minia, Egypt, 61111
  • Mechanical Engineering Dept., College of Engineering and Islamic Architecture, Umm Al-Qura University, KSA
  • Mechanical Engineering Dept., College of Engineering and Islamic Architecture, Umm Al-Qura University, KSA
Bibliografia
  • [1] Tsao C.C.: Thrust Force and Delamination of Core Saw Drill During Drilling of Carbon Fiber Reinforced Plastics (CFRP), International Journal of Advanced Manufacturing Technology, Vol. 37, 2008, pp. 23-28.
  • [2] Krishnamoorthy A., Boopathy S.R., Palanikumar K.: Delamination Analysis in Drilling of CFRP Composites Using Response Surface Methodology, Journal of Composite Materials, Vol. 43, No. 24, 2009, pp. 2885-2901.
  • [3] Vaddadi, Pavankiran, Toshio Nakamura, Raman P. Singh: Transient hygrothermal stresses in fiber reinforced composites: a heterogeneous characterization approach, Composites Part A: Applied Science and Manufacturing 34.8 (2003): 719-730.
  • [4] Hinton M.J., Soden P.D.: Predicting failure in composite laminates: the background to the exercise, Compos SciTechnol 1998; 58: 1001-10.
  • [5] Camanho P.P., Maimi P., Davila C.G.: Prediction of size effects in notched laminates using continuum damage mechanics, composite science and technology Vol. 67, pp. 2715-2727, 2007.
  • [6] Green B.G., Wisnom M.R., Hallet S.R.: An experimental investigation into the tensile strength scaling of notched composites, Composites-Part A 2007; 38: 867-78.
  • [7] Bâzant Z.P., Daniel I.M., Li Z.: Size effect and fracture characteristics of composite laminates, J Eng Mater Technol 1996; 118: 317-23.
  • [8] Dvorak G.J., Suvorov A.P.: Size effect in fracture of unidirectional composite plates, Int J Fract 1999; 95: 89-101.
  • [9] Bâzant Z.P., Zhou Y., Novak D., Daniel I.M.: Size effect on flexural strength of fiber-composite laminates, J Eng Mater Technol 2004; 126: 29-37.
  • [10] Bazant Z.P.: Size effect, Int J Solids Struct 2000; 37: 69-80.
  • [11] Wisnom M.R.: Size effects in the testing of fibre-reinforced composites, Compos SciTechnol 1999; 59: 1937-57.
  • [12] Wisnom M.R., Khan B., Hallet S.R.: Size effects in unnotched tensile strength of unidirectional and quasi-isotropic carbon/epoxy composites, Composite Structures. 2008; 84:21-28.
  • [13] Bullock R.E.: Strength ratios of composite materials in flexure and in tension, J Compos Mater. 1974; 8:200-6.
  • [14] Hitchon J.W., Phillips D.C.: The effect of specimen size on the strength of CFRP, Composites. 1978; 9:119-24.
  • [15] Jackson K.E., Kellas S.: Effect of specimen size on the tensile strength of geometrically scaled [+Θn/-Θn/902n]S composite laminates, In: US Army Symposium on Solid Mechanics, Plymouth MA, August 1993.
  • [16] Wisnom M.R., Atkinson J.A.: Reduction in tensile and flexural strength of unidirectional glass fiber-epoxy with increasing specimen size, Compos Struct.1997; 38: 405-12.
  • [17] Jackson K.E., Kellas S., Morton J.: Scale effects in the response and failure of fiber reinforced composite laminates loaded in tension and in flexure, Journal of composite materials 26.18 (1992): 2674-2705.
  • [18] Cunningham M.E., Schoulz S.V., Toth J.M.: Effect of the end tab design on tension specimen stress concentrations, In: Recent advances in composites in the United States and Japan, ASTM STP 864. 1985; pp. 263-62.
  • [19] Hojo M., Sawada Y., Miyairi H.: Influence of clamping method on tensile properties of unidirectional CFRP in 0º and 90º directions round robin activity for international standardization in Japan, Composites. 1994; 25:786-96.
  • [20] Wisnom M.R., Maheri M.R.: Tensile strength of unidirectional carbon fibre-epoxy from tapered specimens. In: Second European conference on composites testing and standardization, Hamburg, 1994. p.p. 239-47.
  • [21] Bing Q., Sun C.T.: Specimen size effect in off-axis compression tests of fiber composites, Composites Part B: Engineering. 2008; 39:20-26.
  • [22] Soutis C., Lee J.: Scaling effects in notched carbon fibre/epoxy composites loaded in compression, Journal of Materials Science. 2008; 43(20): 6593-98.
  • [23] Lee J., Soutis C.: Measuring the notched compressive strength of composite laminates: Specimen size effects, Composites Science and Technology. 2008; 68(12): 2359-66.
  • [24] Wisnom M.R., Hallet S.R., Soutis C.: Scaling Effects in Notched Composites, Journal of Composite Materials. 2010; 44(2): 195-210.
  • [25] Camanho P.P., Davila C.G.: Mixed-mode decohesion finite elements for the simulation of delamination in composite materials, NASA-Technical Paper 211737.1 (2002): 33.
  • [26] Elder D.J., Thomson R.S., Nguyen M.Q., Scott M.L.: Review of delamination predictive methods for low speed impact of composite laminates. Composite Structures, 66(1), 2004, 677-683.
  • [27] Balzani C., Wagner W.: An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates, Engineering Fracture Mechanics 75.9 (2008): 2597-2615.
  • [28] Aymerich F., Dore F., Priolo P.: Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements, Composites Science and Technology 68.12 (2008): 2383-2390.
  • [29] Belytschko T., Black T.: Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer Meth Engng, 45(5):601; 20, 1999.
  • [30] Melenk J.M., Babuska I.: The partition of unity finite element method: Basic theory and applications, Comput Meth App Mechs Engrg 1996; 289-314.
  • [31] Möes N., Dolbow J., Belytschko T.: A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, Vol. 46, No. 1, 1999, pp. 132-150.
  • [32] Qian, Zhen-dong, Jing Hu.: Fracture properties of epoxy asphalt mixture based on extended finite element method, Journal of Central South University 19.11 (2012): 3335.
  • [33] Sukumar N., Möes N., Moran B., Belytschko T.: Extended finite element method for three-dimensional crack modeling, International Journal for Numerical Methods in Engineering, Vol. 48, No. 11, 2000, pp. 1549-1570.
  • [34] Khashaba U.A.: In-plane shear properties of cross-ply composite laminates with different off-axis angles, Composite structures 65.2 (2004): 167-177.
  • [35] Standard test method constituent of composite material, ASTM D 3171-99, American Society for Testing and Materials (ASTM).
  • [36] Davis J.R.: Tensile testing, ASM International (OH), (2004).
  • [37] Standard test method for tensile properties of polymer matrix composite materials, ASTM D 3039/D 3039M-00. West Conshohocken (PA), USA: American Society for Testing and Materials (ASTM).
  • [38] ASTM D3518. ”Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45º Laminate.” W. Conshohocken, PA: Am. Soc. Test. Mater., (2001).
  • [39] Standard Method of Test for Plane Strain Fracture Toughness in Metallic Materials, ASTM E399-81, American Society for Testing and Materials, Philadelphia (1981).
  • [40] Standard ASTM ”D638M-93, 1993, “ Standard Test Method for Tensile Properties of Plastics (Metric),” Annual Book of ASTM Standards, Part 8: 59-67.
  • [41] Mohamed K. Hassan, Mohammed Y., Salem T.M., Hashem A.M.: Prediction of nominal strength of composite structure open hole specimen through cohesive laws, international journal of mechanical & mechanical Engineering IJMME-IJENS Vol. 12, pp. 1-9. http://www.ijens.org/IJMME%20Vol%2012%20Issue%2001.html .
  • [42] Planas J., Bâzant Z.P., Jirasek M.: Reinterpretation of Karihaloo’s, size effect analysis for notched quasibrittle structures, international journal of fracture 111: 17-28, 2001.
  • [43] Goangseup Zi., Bâzant Z.P.: Eigenvalue method for computing size effect of cohesive cracks with residual stress, with application to kink-bands in composites, international journal of engineering science Vol. 41, pp. 1519-1534, 2003.
  • [44] Bâzant Z.P., Fellow, ASCE, Z. Li: Zero brittleness size effect method for one size fracture test of concrete, journal of engineering mechanics, pp. 458-468, 1996.
  • [45] ABAQUS, Abaqus Version. ”6.9 Documentation.” Providence, RI: DassaultSystemesSimulia Corporation (2009).
  • [46] Curiel Sosa J.L., Karapurath N.: Delamination modelling of GLARE using the extended finite element method. Composites Science and Technology 72.7 (2012): 788-791.
  • [47] Mohammed Y., Hassan M.K., Abu El-Ainin H., & Hashem A.M.: Size effect analysis of open-hole glass fiber composite laminate using two-parameter cohesive laws. Acta Mechanica, Volume 226, Issue 4, pp 1027-1044. http://link.springer.com/article/10.1007%2Fs00707-014-1150-0.
  • [48] Jones R.M.: Mechanics of Composite Materials. Taylor & Francis, London (1999).
  • [49] Mallick P.K.: Fiber-Reinforced Composites, 2nd edn. Marcel Dekker Press, New York (1993).
  • [50] Gibson R.F.: Principles of Composite Material Mechanics. CRC Press, Boca Raton (2011).
  • [51] Maimi P., Trias D., Gonzalez E.V., Renart J.: Nominal strength of Quasibrittle open hole specimens. Compos. Sci. Technol. 72, 1203-1208 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-624036eb-413e-4b81-810c-1578013a5f0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.