PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Besov regularity of the Bifractional Brownian motion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Our aim is to improve Hölder continuity results for the bifractional Brownian motion (bBm) (Bα,β(t))t∈[0,1] with 0 < α < 1 and 0 < β ≤ 1. We prove that almost all paths of the bBm belong to (resp. do not belong to) the Besov spaces Bes(αβ,p) (resp. bes(αβ,p)) for any 1/αβ < p < ∞, where bes(αβ,p) is a separable subspace of Bes(αβ,p). We also show similar regularity results in the Besov-Orlicz space Bes(αβ, M2) with M2(x) = ex2 −1. We conclude by proving the Itô-Nisio theorem for the bBm with αβ > 1/2 in the Hölder spaces Cγ with γ < αβ.
Rocznik
Strony
303--320
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • Department of Mathematics Faculty of Sciences Semlalia Cadi Ayyad University 2390 Marrakesh, Morocco
  • Department of Mathematics Faculty of Sciences Semlalia Cadi Ayyad University 2390 Marrakesh, Morocco
Bibliografia
  • [1] M. Ait Ouahra, H. Ouahhabi and A. Sghir, Continuity in law of some additive functionals of the bifractional Brownian motion, Stochastics 91 (2019), 613-628.
  • [2] D. Alpay and D. Levanony, On the reproducing kernel Hilbert spaces associated with the fractional and bi-fractional Brownian motions, Potential Anal. 28 (2008), 163-184.
  • [3] X. Bardina and K. Es-Sebaiy, An extension of bifractional Brownian motion. Comm. Stoch. Anal. 5 (2011), 333-340.
  • [4] T. Bojdecki, L. G. Gorostiza and A. Talarczyk, Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems, Electron. Comm. Probab. 12 (2007), 161-172.
  • [5] B. Boufoussi, E. Lakhel and M. Dozzi, A Kolmogorov and tightness criterion in modular Besov spaces and an application to a class of Gaussian processes, Stoch. Anal. Appl. 23 (2005), 665-685.
  • [6] B. Boufoussi and Y. Nachit, Besov regularity and local time of the solution to stochastic heat equation, arXiv:2006.04235v1 (2020).
  • [7] Z. Ciesielski, Modulus of smoothness of the Brownian paths in the Lp norm, in: Constructive Theory of Functions (Varna, 1991), 71-75.
  • [8] Z. Ciesielski, Orlicz spaces, spline systems and Brownian motion, Constr. Approx. 9 (1993), 191-208.
  • [9] Z. Ciesielski, G. Keryacharian and B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, Studia Math. 107 (1993), 171-204.
  • [10] C. El-Nouty, The increments of a bifractional Brownian motion, Studia Sci. Math. Hungar. 46 (2009), 449-478.
  • [11] C. El-Nouty and J. L. Journé, Upper classes of the bifractional Brownian motion, Studia Sci. Math. Hungar. 48 (2011), 371-407.
  • [12] K. Es-Sebaiy and C. A. Tudor, Multidimensional bifractional Brownian motion: Itô and Tanaka’s formulas, Stoch. Dynam. 3 (2007), 365-388.
  • [13] X. Fernique, Régularité de processus gaussiens, Invent. Math. 12 (1971), 304-320.
  • [14] C. Houdré and J. Villa, An example of infinite dimensional quasi-helix, in: Stochastic Models, Contemp. Math. 366, Amer. Math. Soc., 2003, 195-201.
  • [15] T. P. Hytönen and M.C. Veraar, On Besov regularity of Brownian motions in infinite dimensions, Probab. Math. Statist. 28 (2008), 143-162.
  • [16] K. Itô and M. Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka J. Math. 5 (1968), 35-48.
  • [17] J.-P. Kahane, Hélices et quasi-hélices, Adv. Math. 7B (1981), 417-433.
  • [18] J.-P. Kahane, Some Random Series of Functions, Cambridge Univ. Press, 1985.
  • [19] G. Kerkyacharian and B. Roynette, Une démonstration simples des théorèmes de Kolmogorov, Donsker et Ito-Nisio, C. R. Acad. Sci. Paris Sér. 312 (1991), 877-882.
  • [20] I. Kruk, F. Russo and C. A. Tudor, Wiener integrals, Malliavin calculus and covariance structure measure, J. Funct. Anal. 249 (2007), 92-142.
  • [21] H. Lakhel, Y. Ouknine and C. A. Tudor, Besov regularity for the indefinite Skorohod integral with respect to the fractional Brownian motion: the singular case, Stoch. Stoch. Reports 74 (2002), 597-615.
  • [22] P. Lei and D. Nualart, A decomposition of the bi-fractional Brownian motion and some applications, Statist. Probab. Lett. 79 (2009), 619-624.
  • [23] M. Ondreját and M. Veraar, On temporal regularity of stochastic convolutions in 2-smooth Banach spaces, Ann. Inst. H. Poincaré Probab. Statist. 56(3) (2020), 1792-1808.
  • [24] I. Mendy, On the local time of sub-fractional Brownian motion, Ann. Math. Blaise Pascal 17 (2010), 357-374.
  • [25] D. Nualart and Y. Ouknine, Besov regularity of stochastic integrals with respect to the fractional Brownian motion with parameter H > 1/2, J. Theoret. Probab. 16 (2003), 451-470.
  • [26] B. Roynette, Mouvement Brownien et espaces de Besov, Stoch. Stoch. Reports 43 (1993), 221-260.
  • [27] F. Russo and C. A. Tudor, On the bifractional Brownian motion, Stoch. Process. Appl. 5 (2006), 830-856.
  • [28] A. Talarczyk, Bifractional Brownian motion for H > 1 and 2HK ≤ 1, Statist. Probab. Lett. 157 (2020), art. 108628, 6 pp.
  • [29] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd ed., Johann Ambrosius Barth, Heidelberg, 1995.
  • [30] C. A. Tudor and Y. Xiao, Sample path properties of bifractional Brownian motion, Bernoulli 13 (2007), 1023-1052.
  • [31] M. C. Veraar, Correlation inequalities and applications to vector-valued Gaussian random variables and fractional Brownian motion, Potential Anal. 30 (2009), 341-370.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-623aab5d-f4ef-481b-a522-7e6b8c284b46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.