PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Entobia ichnofacies from the Middle Miocene carbonate succession of the northern Western Desert of Egypt

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A bed of Middle Miocene (Serravallian) lagoonal facies with well-developed patch reefs is described from a section at the Siwa Oasis, northern Western Desert of Egypt. It is well-exposed in the middle Siwa Escarpment Member of the Marmarica Formation and displays remarkable bioerosion structures that show abundant ichnofossils. Nine ichnotaxa, belonging to four ichnogenera, were identified: two correspond to the clionaid sponge boring Entobia (E. laquea and E. ovula), five to the bivalve boring Gastrochaenolites (G. lapidicus, G. torpedo, G. cluniformis, G. hospitium and G. cf. orbicularis) and two to the annelid-worm boring Maeandropolydora (M. sulcans) and Trypanites (T. weisei). In addition, traces of the boring polychaete worm Caulostrepsis and the boring acrothoracican barnacle Rogerella were recorded. These ichnoassemblages have been assigned to the Entobia ichnofacies. The organisms bored into a hard, fully lithified carbonate substrate in a low-energy, shallow-marine environment. The ichnotaxa associations indicate water depths of a few metres (<10 m) and a very low sedimentation rate in a lagoonal setting during a Serravallian regressive cycle.
Rocznik
Strony
1--19
Opis fizyczny
Bibliogr. 120 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Geology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
  • Deanship of Scientific Research, King Saud University, Riyadh, Kingdom of Saudi Arabia
  • Department of Geology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
Bibliografia
  • 1. Abdel-Fattah, Z.A. & Assal, E.M., 2016. Bioerosion in the Miocene reefs of the northwest Red Sea, Egypt. Lethaia, 49: 398-412.
  • 2. Abdel-Fattah, Z. A., Kora, M.A. & Ayyad, S.N., 2013. Facies architecture and depositional development of Middle Miocene carbonate strata at Siwa Oasis, Northwestern Egypt. Facies, 59: 505-528.
  • 3. Aigner, T., 1983. A Pliocene cliff-line around the Giza Pyramids Plateau, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology, 42: 313-322.
  • 4. Árpád, D., 2004. Clionidae bioerózió késo-oligocén osztrigákon (Wind-féle téglagyár, Eger). Fôldtani Kôzlôny, 134: 41-53. [In Hungarian, with English abstract.]
  • 5. Basterot, B., de, 1825. Description géologique du bassin tertiaire du Sud-Ouest de la France, (avec) description des coquilles fossiles des environs de Bordeaux. Mémoires de la Société d’Histoire Naturelle de Paris, 2: 1-100.
  • 6. Benedict, J.E., 1886. Descriptions of ten species and one new genus of annelids from the dredgings of the U.S. Fish Commission steamer Albatross. Proceedings of the United States National Museum, 9: 547-553.
  • 7. Beuck, L. & Freiwald, A., 2005. Bioerosion patterns in a deep-water Lophelia pertusa (Scleractinia) thicket (Propeller Mound, northern Porcupine Seabight). In: Freiwald, A. & Roberts, J. M. (eds), Cold-water Corals and Ecosystems. Springer-Verlag, Berlin, pp. 915-936.
  • 8. Blanco, G.A., Marasas, M.E. & Amor, A., 1988. Una comparación del crecimiento relativo en los Mitílidos Lithophaga patagonica y Brachydontes rodriguezi (Mollusca, Bivalvia). Anales del Museo de Historia Natural de Valparaiso, 19: 65-74.
  • 9. Blissett, D. J. & Pickerill, R.K., 2004. Observations on bioerosional structures from the White Limestone Group of Jamaica. In: Donovan, S. K. (ed.), The Mid-Cainozoic White Limestone Group of Jamaica. Cainozoic Research, 3: 167-187.
  • 10. Blissett, D.J. & Pickerill, R.K., 2007. Systematic ichnology of microborings from the Cenozoic White Limestone Group, Jamaica, West Indies. Scripta Geologica, 134: 77-108.
  • 11. Bromley, R.G., 1970. Borings as trace fossils and Entobia cretacea Portlock, as an example. In: Crimes, T.P. & Harper, J.C. (eds), Trace fossils. Geological Journal Special Issue, 3: 49-90.
  • 12. Bromley, R.G., 1972. On some ichnotaxa in hard substrates, with a redefinition of Trypanites Mägdefrau. Paläontologische Zeitschrift, 46: 93-98.
  • 13. Bromley, R.G., 1978. Bioerosion of Bermuda reefs. Palaeogeography, Palaeoclimatology, Palaeoecology, 23: 169-197.
  • 14. Bromley, R.G., 1992. Bioerosion: eating rocks for fun and profit. In: Maples, C.G. & West, R.R. (eds), Trace fossils. Short Courses in Paleontology, 5: 121-129. Paleontological Society, Knoxville.
  • 15. Bromley, R.G., 1994. The palaeoecology of bioerosion. In: Donovan, S. K. (ed.), The Palaeobiology of Trace Fossils. John Wiley & Sons, Chichester, pp. 134-154.
  • 16. Bromley, R.G., 1996. Trace Fossils: Biology, Taphonomy and Applications, 2nd edition. Chapman & Hall, London, 361 pp.
  • 17. Bromley, R.G., 2004. A stratigraphy of marine bioerosion. In: Mcllroy, D. (ed.), The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society London Special Publications, 228: 455-481.
  • 18. Bromley, R.G. & Asgaard, U., 1993a. Endolithic community replacement on a Pliocene rocky coast. Ichnos, 2: 93-116.
  • 19. Bromley, R.G. & Asgaard, U., 1993b. Two bioerosion ichnofacies produced by early and late burial associated with sea level change. Geologische Rundschau, 82: 276-280.
  • 20. Bromley, R.G. & D’Alessandro, A., 1983. Bioerosion in the Pleistocene of southern Italy: ichnogenera Caulostrepsis and Mae- and ropolydora. Rivista Italiana di Paleontologia e Stratigrafia, 89: 283-309.
  • 21. Bromley, R.G. & D’Alessandro, A., 1984. The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Rivista Italiana di Paleontologia e Stratigrafia, 90: 227-296.
  • 22. Bromley, R.G. & D’Alessandro, A., 1987. Bioerosion of the Plio-Pleistocene transgression of southern Italy. Rivista Italiana di Paleontologia e Stratigrafia, 93: 379-442.
  • 23. Bronn, H.G., 1837. Lethaea Geognostica, oder Abbildungen und Beschreibungen der fur die Gebirgsformationen bezeichendsten Versteinerungen. Schweizerbart, Stuttgart, 672 pp.
  • 24. Buatois, L. A. & Mángano, M. G., 2011. Ichnology: Organism-Substrate Interactions in Space and Time. Cambridge University Press, Cambridge, 358 pp.
  • 25. Buxton, M. W. & Pedley, H. M., 1989. A standardized model for Tethyan Tertiary carbonate ramps. Journal of the Geological Society, 146: 746-748.
  • 26. Calcinai, B., Bavestrello, G. & Cerrano, C., 2005. Excavating sponge species from the Indo-Pacific Ocean. Zoological Studies, 44: 5-18.
  • 27. Cameron, B., 1969. Paleozoic shell-boring annelids and their trace fossils. American Zoologist, 9: 689-703.
  • 28. Chrząstek, A., 2013. Trace fossils from the Lower Muschelkalk of Raciborowice Górne (North Sudetic Synclinorium, SW Poland) and their palaeoenvironmental interpretation. Acta Geologica Polonica, 63: 315-353.
  • 29. Claparede, E., 1868. Les Annélides Chétopodes du Golfe de Naples. Ramboz et Schuchardt, Geneve, 500 pp.
  • 30. Clarke, J.M., 1908. The beginnings of dependent life. New York State Museum Bulletin, 121: 146-196.
  • 31. CONOCO, Egyptian General Petroleum Corporation EGPC, 1988. Geological Map of Egypt, Scale 1: 500,000. NH 35 SW Siwa, 1 Sheet. The Egyptian General Petroleum Corporation, Cairo, Egypt.
  • 32. Domenech, R., Gibert, J.M., de & Martinell, J., 2001. Ichnological features of a marine transgression: Middle Miocene rocky shores of Tarragona, Spain. Geobios, 34: 99-107.
  • 33. Donovan, S.K., Blissett, D.J. & Currant, A.P., 2001. Trace fossils of the Lower Pleistocene Manchioneal Formation of eastern Jamaica. Caribbean Journal of Science, 37: 292-295.
  • 34. Donovan, S.K. & Hensley, C., 2006. Gastrochaenolites Leymerie in the Cenozoic of the Antillean Region. Ichnos, 13: 11-19.
  • 35. Donovan, S.K. & Jagt, J.W.M., 2013. Rogerella isp. infesting the pore pairs ofHemipneustes striatoradiatus (Leske) (Echinoidea: Upper Cretaceous, Belgium). Ichnos, 20: 153-156.
  • 36. Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W. E. (ed.), Classification of carbonate rocks. American Association of Petroleum Geologists Memoirs, 1: 108-121.
  • 37. Edinger, E.N. & Risk, M. J., 1994. Oligocene-Miocene extinction and geographic restriction of Caribbean corals: Roles of turbidity, temperature, and nutrients. Palaios, 9: 576-598.
  • 38. Ekdale, A.A., Bromley, R.G. & Pemberton, G.S., 1984. Ichnology: the use of trace fossils in sedimentology and stratigraphy. Society of Economic Geologists and Paleontologists, Short Course, 15: 1-317.
  • 39. El-Hedeny, M.M., 2007. Ichnology of the Upper Cretaceous (Cenomanian-Campanian) sequence of western Sinai, Egypt. Egyptian Journal of Paleontology, 7: 269-288.
  • 40. El-Sabbagh, A.M. & El-Hedeny, M.M., 2016. A shell concentration of the Middle Miocene Crassostrea gryphoides (Schlotheim, 1813) from Siwa Oasis, Western Desert, Egypt. Journal of African Earth Sciences, 120: 1-11.
  • 41. El-Sabbagh, A.M., El-Hedeny, M.M. & Al Farraj, A.S., 2017. Thalassinoides in the Middle Miocene succession at Siwa Oasis, northwestern Egypt. Proceedings of the Geologists’ Association, 128: 222-233.
  • 42. El-Sabbagh, A.M., El-Hedeny, M. M., Rashwan, M.A. & Abdel Aal, A.A., 2016. The bivalve Placuna (Indoplacuna) miocenica from the Middle Miocene of Siwa Oasis, Western Desert of Egypt: Systematic paleontology, paleoecology, and taphonomic implications. Journal of African Earth Sciences, 116: 68-80.
  • 43. El-Shazly, S. H. & Abdel-Hamid, M. A., 2001. Contribution to the Middle Miocene megafossils from Siwa Oasis, Western Desert, Egypt. Egyptian Journal of Paleontology, 1: 263-297.
  • 44. Fagerstrom, J.A., 1987. The Evolution of Reef Communities. Wiley, New York, 600 pp.
  • 45. Fichtel, L. & Moll, J., 1798. Testacea microscopica aliaque minuta ex generibus Argonauta et Nautilus ad naturam picta et descripta. Neue Denkschriften des Naturhistorischen Museums in Wien, 3: 1-143.
  • 46. Frey, R.W. & Seilacher, A., 1980. Uniformity in marine invertebrate ichnology. Lethaia, 13: 183-207.
  • 47. Fuchs, T., 1883. Beiträge zur Kenntnis der Miocaenfauna Ägyptens und der libyschen Wuste. Palaeontographica, 30: 19-66.
  • 48. Galinou-Mitsoudi, S. & Sinis, A. I., 1994. Reproductive cycle and fecundity of the date mussel Lithophaga lithophaga (Bivalvia: Mytilidae). Journal of Molluscan Studies, 60: 371-385.
  • 49. Geel, T., 2000. Recognition of stratigraphic sequences in carbonate platform and slope deposits: Empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 155: 211-238.
  • 50. Gibert, J. M., de, Domenech, R. & Martinell, J., 2007. Bioerosion in shell beds from the Pliocene Roussillon Basin, France: Implications for the (macro)bioerosion ichnofacies model. Acta Palaeontologica Polonica, 52: 783-798.
  • 51. Gibert, J.M., de, Domenech, R. & Martinell, J., 2012. Rocky shorelines. In: Knaust, D. & Bromley, R. G. (eds), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, 64: 441-462.
  • 52. Gibert, J.M., de, Martinell, J. & Domenech, R., 1998. Entobia ichnofacies in fossil rocky shores, Lower Pliocene, northwestern Mediterranean. Palaios, 13: 476-487.
  • 53. Gindy, A.R. & El-Askary, M.A., 1969. Stratigraphy, structure and origin of Siwa depression, Western Desert of Egypt. American Association of Petroleum Geologists Bulletin, 53: 603-625.
  • 54. Guiraud, R., Bosworth, W., Thierry, J. & Delplanque, A., 2005. Phanerozoic geological evolution of Northern and Central Africa: An overview. Journal of African Earth Sciences, 43: 83-143.
  • 55. Gurav, S. S. & Kulkarni, K. G., 2017. Natural casts of Early Eocene Entobia from the Kachchh Basin, India. Ichnos, https://doi.or g/10.1080/10420940.2017.1308864.
  • 56. Hageman, S.J., Lukasik, J., McGowran, B. & Bone, Y., 2003. Paleoenvironmental significance of Celleporaria (Bryozoan) from modern and Tertiary cool water carbonates of Southern Australia. Palaios, 18: 510-527.
  • 57. Hallock, P. & Glenn, E. C., 1986. Larger foraminifera: A tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios, 1: 55-64.
  • 58. Hancock, A., 1849. On the excavating powers of certain sponges belonging to the genus Cliona with descriptions of several new species, and an allied generic form. Annals and Magazine of Natural History, (2) 3(17): 321-348.
  • 59. Hancock, A., 1867. Note on the excavating sponges; with descriptions of four new species. Annals and Magazine of Natural History, (3) 19(112): 229-242.
  • 60. Hanken, N.-M., Uchman, A. & Jakobsen, S.L., 2012. Late Pleistocene-early Holocene polychaete borings in NE Spitsbergen and their palaeoecological and climatic implications: An example from the Basissletta area. Boreas, 41: 42-55.
  • 61. Häntzschel, W., 1975. Trace fossils and problematica. In: Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Part W. Miscellanea. Geological Society of America and the University of Kansas, Boulder, Colorado, pp. 1-269.
  • 62. Hernández-Ballesteros,L.M.,Elizalde-Rendón,E.M.,Carballo,J.L. & Carricart-Ganivet, J. P., 2013. Sponge bioerosion on reef-building corals: Dependent on the environment or on skeletal density? Journal of Experimental Marine Biology and Ecology, 441: 23-27.
  • 63. Higgs, N. D., Little, C.T., Glover, A. G., Dahlgren, T. G., Smith, C.R. & Dominici, S., 2012. Evidence of Osedax worm borings in Pliocene (~3 Ma) whale bone from the Mediterranean. Historical Biology, 24: 269-277.
  • 64. Hutchings, P. A., Kiene, W.E., Cunningham, R.B. & Donnelly, C., 1992. Spatial and temporal patterns of non-colonial boring organisms (polychaetes, sipunculans and bivalve molluscs) in Porites at Lizard Island, Great Barrier Reef. Coral Reefs, 11: 23-31.
  • 65. James, N.P., 1983. Reef environment. In: Scholle, P. A., Bebout, D.G. & Moore, C. H. (eds), Carbonate depositional environments. American Association of Petroleum Geologists Memoirs, 33: 345-440.
  • 66. James, N. P., Kobluk, D. R. & Pemberton, S. G., 1977. The oldest macroborers: Lower Cambrian of Labrador. Science, 197: 980-983.
  • 67. Jones, B. & Pemberton, S.G., 1988. Lithophaga borings and their influence on the diagenesis of corals in the Pleistocene Iron- shore Formation of Grand Cayman Islands, British West Indies. Palaios, 3: 3-21.
  • 68. Kelly, S.R. & Bromley, R.G., 1984. Ichnological nomenclature of clavate borings. Palaeontology, 27: 793-807.
  • 69. Kidwell, S.M., 1991. The stratigraphy of shell concentrations. In: Allison, P.A. & Briggs, D.E. (eds), Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum Press, New York, pp. 211-290.
  • 70. Kidwell, S.M. & Bosence, D. W., 1991. Taphonomy and time-averaging of marine shelly fauna. In: Allison, P. A. & Briggs, D. E. (eds), Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum Press, New York, pp. 115-209.
  • 71. Kleemann, K.H., 1973. Der Gesteinsabbau durch Ätzmuscheln an Kalkkusten. Oecologia, 13: 377-395.
  • 72. Kleemann, K.H., 1994. Associations of corals and boring bivalves since the Late Cretaceous. Facies, 31: 131-140.
  • 73. Kleemann, K.H., 2009. Gastrochaenolites hospitium isp. nov., trace fossil by a coral-associated boring bivalve from the Eocene and Miocene of Austria. Geologica Carpathica, 60: 339-342.
  • 74. Leymerie, M.A., 1842. Suite du mémoire sur le terrain Crétacé du Departement de l’Aube. Bulletin de la Société géologique de France, 5: 1-34.
  • 75. Linné, C. Von, 1758. Opera varia, in quibus continentur Fundamenta botanica, Sponsalia plantarum, et Systemae naturae: in quo proponuntur naturae regna tria secundum classes, ordines, genera et specie. Ex Typographia Juntiniana, Lucae, 376 pp.
  • 76. MacEachern, J. A., Pemberton, S.G., Gingras, M. K. & Bann, K.L., 2007. The ichnofacies paradigm: A fifty-year retrospective. In: Miller, W., III (ed.), Trace Fossils. Concepts, Problems, Prospects. Elsevier, Amsterdam, pp. 52-77.
  • 77. Macintyre, I.G., 1984. Preburial and shallow-subsurface alteration of modern scleractinian corals. Palaeontologica, 54: 229-244.
  • 78. Mägdefrau, K., 1932. Über einige Bohrgänge aus dem unteren Muschelkalk von Jena. Paläontologische Zeitschrift, 14: 150-160.
  • 79. Mikuláš, R., 1992. Early Cretaceous borings from Štramberk (Czechoslovakia). Časopis pro Mineralogii a Geologii, 37: 97-312.
  • 80. Mikuláš, R. & Pek, I., 1996. Trace fossils from the Roblín Member of the Srbsko Formation (Middle Devonian, Barrandian area, central Bohemia). Journal of the Czech Geological Society, 41: 79-84.
  • 81. Montagu, G., 1803. Testacea Britannica, or, Natural history of British shells, marine, land, and fresh-water, including the most minute: Systematically arranged and embellished with figures. J. White, London, 291 pp.
  • 82. Murray, J.W., 1991. Ecology and Palaeoecology of Benthic Foraminifera. Longman Scientific & Technical, New York, 397 pp.
  • 83. Orbigny, A. de, 1852. Prodrome de paleontologie stratigraphique universelle des animaux mollusques & rayonnés, faisant suite au Cours élémentaire de paleontologie et de geologie stratigraphiques. Victor Masson, Paris, 190 pp.
  • 84. Pennant, T., 1777. British Zoology, Vol. IV Crustacea. Mollusca. Testacea. B. White, London, 154 pp.
  • 85. Perry, C.T., 1996. Distribution and abundance of macroborers in an Upper Miocene reef system, Mallorca, Spain: Implications for reef development and framework destruction. Palaios, 11: 40-56.
  • 86. Perry, C.T., 1998. Macroborers within coral framework at Discovery Bay, north Jamaica: Species distribution and abundance, and effects on coral preservation. Coral Reefs, 17: 277-287.
  • 87. Perry, C.T., 2000. Macroboring of Pleistocene coral communities, Falmouth Formation, Jamaica. Palaios, 15: 483-491.
  • 88. Pickerill, R.K., Donovan, S. K. & Mitchell, S.F., 1998. Ichnology of the late Pleistocene Port Morant Formation of southeastern Jamaica. Caribbean Journal of Science, 34: 12-32.
  • 89. Pickerill, R.K, Donovan, S.K. & Portell, R.W., 2002. Bioerosional trace fossils from the Miocene of Carriacou, Lesser Antilles. Caribbean Journal of Science, 38: 106-117.
  • 90. Pineda-Salgado, G., Quiroz-Barroso, S.A. & Sour-Tovar, F., 2015. Analysis of bioerosion in clasts from a Miocene rocky- shore, Concepción Formation, Veracruz, México. Palaeogeography, Palaeoclimatology, Palaeoecology, 439: 50-62.
  • 91. Pleydell, S.M. & Jones, B., 1988. Borings of various faunal elements in the Oligocene Miocene Bluff Formation of Grand Cayman, British West Indies. Journal of Paleontology, 62: 348-367.
  • 92. Portlock, J. E., 1843. Report on the geology of the County of Londonderry and parts of Tyrone and Fermanagh. Milliken, Dublin, 784 pp.
  • 93. Radwański, A., 1964, Boring animals in Miocene littoral environments of southern Poland. Bulletin de l’Académie Polonaise des Sciences, Série des Sciences Géologique et Géographique, 12: 57-62.
  • 94. Radwański, A., 1969. Lower Tortonian transgression onto the southern slopes of the Holy Cross Mts. Acta Geologica Polonica, 19: 1-160. [In Polish, with English summary.]
  • 95. Radwański, A., 1970. Dependence of rock-borers and burrowers on the environmental conditions within the Tortonian littoral zone of Southern Poland. In: Crimes, T.P. & Harper, J.C. (eds), Trace fossils. Geological Journal Special Issue, 3: 371-390.
  • 96. Ridley, S.O., 1881. Coelenterata. In: Gunther, A., Account of the zoological collections made during the survey of H.M.S. Alert in the Straits of Magellan and on the coast of Patagonia. Proceedings of the Zoological Society of London, 101-107.
  • 97. Rus, M. & Popa, M. V, 2008. Taxonomic notes on the Badenian corals from Lăpugiu de Sus (Făget Basin, Romania). Acta Palaeontologica Romaniae, 6: 325-337.
  • 98. Sacco, F., 1897. I Molluschi dei terreni Terziarii del Piemonte e della Liguria. Parte 24 (Pectinidae). Carlo Clausen, Torino, 116 pp.
  • 99. Said, R., 1962. The Geology of Egypt. Elsevier, Amsterdam, 377 pp.
  • 100. Said, R., 1990. The Geology of Egypt. Balkema Publishers, Rotterdam, 734 pp.
  • 101. Saint-Seine, R. de, 1951. Un cimpede acrothoracique du Crétacé: Rogerella lecointrei nov. gen., nov. sp. Comptes rendus de l’Académie des Sciences, 233: 1051-1054.
  • 102. Sanders, D. & Baron-Szabo, R. C., 2005. Scleractinian assemblages under sediment input: Their characteristics and relation to the nutrient input concept. Palaeogeography, Palaeoclimatology, Palaeoecology, 216: 139-181.
  • 103. Santos, A., Mayoral, E., da Silva, C.M., Cachäo, M. & Kullberg, J. C., 2010. Trypanites ichnofacies: Palaeoenvironmental and tectonic implications. A case study from the Miocene disconformity at Foz da Fonte (Lower Tagus Basin, Portugal). Palaeogeography, Palaeoclimatology, Palaeoecology, 292: 35-43.
  • 104. Schlotheim, E.F., 1813. Beitrage zur Naturgeschichte der Versteinerungen in geognotischer Hinsicht. Leonhard s Jahrbuch fur Mineralogie, 7: 1-100.
  • 105. Seilacher, A., 1964. Biogenic sedimentary structures. In: Imbrie, J. & Newell, N. D. (eds), Approaches to Palaeoecology. Wiley, New York, pp. 296-316.
  • 106. Seilacher, A., 1967. Bathymetry of trace fossils. Marine Geology, 5: 413-428.
  • 107. Seilacher, A., 1992. Quo vadis, Ichnology? In: Maples, CG. & West, R. R. (eds), Trace fossils. Short Courses in Paleontology, 5: 224-238. Paleontological Society, Knoxville.
  • 108. Tapanila, L., 2008. The endolithic guild: An ecological framework for residential cavities in hard substrates. In: Wisshak, M. & Tapanila, L. (eds), Current Developments in Bioerosion. Springer-Verlag, Berlin, Heidelberg, pp. 3-20.
  • 109. Taylor, P.D. & Wilson, M.A., 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62: 1-103.
  • 110. Topsent, E., 1896. Matériaux pour servir a l’étude de la faune des spongiaires de France. Mémoires de la Société zoologique de France, 9: 113-133.
  • 111. Trigui El-Menif, N., Jaafar, F., Romdhani, M., Flower, R. & Boumaiza, M., 2007. Habitat and associated fauna of Lithophaga lithophaga (Linné, 1758) in the Bay of Bizerta (Tunisia). Journal of Shellfish Research, 26: 569-574.
  • 112. Uchman, A., Demírcan, H., Toker, V., Derman, A. S., Sevim, S. & Szulc, J., 2002. Relative sea-level changes recorded in borings from a Miocene rocky shore of the Mut Basin, southern Turkey. Annales Societatis Geologorum Poloniae, 72: 263-270.
  • 113. Uchman, A., Kleemann, K. & Rattazzi, B., 2017. Macroborings, their tracemakers and nestlers in clasts of a fan delta: The Savignone Conglomerate (Lower Oligocene), Northern Apennines, Italy. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 283/1: 35-51.
  • 114. Uchman, A., Stachacz, M. & Salamon, K., 2018. Spirolites radwanskii n. igen. n. isp.: vermetid gastropod attachment etching trace from the middle Miocene rocky coast of the Paratethys, Poland. Journal of Paleontology, doi: 10.1017/jpa.2017.95.
  • 115. Vertino, A., Stolarski, J., Bosellini, F. R. & Taviani, M., 2014. Mediterranean corals through time: From Miocene to present. In: Goffredo, S. & Dubinsky, Z. (eds), The Mediterranean Sea: Its History and Present Challenges. Springer, Dordrecht, Heidelberg, New York, London, pp. 257-274.
  • 116. Voigt, E., 1965. Uber parasitische Polychaeten in Kreide-Austern sowie einige andere in Muschelschalen bohrende Wurmer. Paläontologische Zeitschrift, 39: 193-211.
  • 117. Wilson, M.A., 2007. Macroborings and the evolution of marine bioerosion. In: Miller, W., III (ed.), Trace Fossils Concepts, Problems, Prospects. Elsevier, Amsterdam, pp. 356-367.
  • 118. Wilson, M.A., Curran, H.A. & White, B., 1998. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia, 31: 241-250.
  • 119. Wilson, M.A., Feldman, H.R. & Krivicich, E.B., 2010. Bioerosion in an equatorial Middle Jurassic coral-sponge reef community (Callovian, Matmor Formation, southern Israel). Palaeogeography, Palaeoclimatology, Palaeoecology, 289: 93-101.
  • 120. Wysocka, A., Radwański, A., Górka, M., Bąbel, M., Radwańska, U. & Złotnik, M., 2016. The Middle Miocene of the Fore-Carpathian Basin (Poland, Ukraine and Moldova). Acta Geologica Polonica, 66: 351-401.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-623890c8-6384-448d-b4d0-200914e3174a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.