Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Obrazowanie oparte na częstotliwości radiowej do lokalizacji wewnątrz pomieszczeń z wykorzystaniem technik bezpamięciowych i technologii bezprzewodowej
Języki publikacji
Abstrakty
Recently, the Internet of Things (IoT) has grown to encompass the surveillance of devices through the utilization of Indoor Positioning Systems (IPS) and Location Based Services (LBS). One commonly used method for developing an Intrusion Prevention System (IPS) is to utilize wireless networks to determine the location of the target. This is achieved by leveraging devices with known positions. Location-based services (LBS) play a vital role in many smart building applications, enabling the creation of efficient and effective work environments. This study examines four memoryless positioning algorithms, namely K-Nearest Neighbour (KNN), Decision tree, Naïve Bayes and Random Forest regressor. The algorithms are compared based on their performance in terms of Mean Square Error, Root Mean Square Error, Mean Absolute Error and R2. A comparative analysis has been conducted to verify the outcomes of different memoryless techniques in Wi-Fi technology. Based on empirical evidence, Naïve Bayes has been determined to be the localization strategy that exhibits the highest level of accuracy. The dataset containing the Received Signal Strength Indicator (RSSI) measurements from all the studies is accessed online.
W ostatnim czasie Internet Rzeczy (IoT) rozwinął się i objął nadzór nad urządzeniami poprzez wykorzystanie Systemów Pozycjonowania Wewnętrznego (IPS) i Usług Lokalizacyjnych (LBS). Jedną z powszechnie stosowanych metod pozycjonowania wewnętrznego (IPS) jest wykorzystanie sieci bezprzewodowych do określenia lokalizacji celu. Osiąga się to poprzez wykorzystanie urządzeń o znanej pozycji. Usługi oparte na lokalizacji (LBS) odgrywają istotną rolę w wielu aplikacjach inteligentnych budynków, umożliwiając tworzenie wydajnych i efektywnych środowisk pracy. W niniejszym opracowaniu przeanalizowano cztery algorytmy pozycjonowania bez pamięci, a mianowicie K-Nearest Neighbour (KNN), drzewo decyzyjne, Naïve Bayes i Random Forest Regressor. Algorytmy są porównywane na podstawie ich wydajności pod względem błędu średniokwadratowego, pierwiastka błędu średniokwadratowego, średniego błędu bezwzględnego i współczynnika determinacji R2. Przeprowadzono analizę porównawczą w celu zweryfikowania wyników różnych technik bez pamięci w technologii Wi-Fi. Na podstawie dowodów empirycznych ustalono, że Naïve Bayes jest strategią lokalizacji, która wykazuje najwyższy poziom dokładności. Zbiór danych zawierający pomiary wskaźnika siły odbieranego sygnału (RSSI) ze wszystkich badań jest dostępny online.
Rocznik
Tom
Strony
10--15
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
- Andhra University College of Engineering, Department of Electronics and Communication Engineering, Visakhapatnam, India
- Andhra University College of Engineering, Department of Electronics and Communication Engineering, Visakhapatnam, India
autor
- Andhra University College of Engineering, Department of Electronics and Communication Engineering, Visakhapatnam, India
autor
- Gayatri Vidya Parishad College of Engineering for Women, Departement of Electronics and Communication Engineering, Visakhapatnam, India
autor
- Gayatri Vidya Parishad College of Engineering, Departement of Civil Engineering, Visakhapatnam, India
Bibliografia
- [1] Ahmad T., X. Li J., Seet B.-C.: A self-calibrated centroid localization algorithm for indoor ZigBee WSNs. 8th IEEE International Conference on Communication Software and Networks (ICCSN), Beijing, China, 2016, 455–461 [https://doi.org/10.1109/ICCSN.2016.7587200].
- [2] Amirisoori S. et al.: Wi-Fi based indoor positioning using fingerprinting methods (KNN algorithm) in real environment. International Journal of Future Generation Communication and Networking 10(9), 2017, 23–36.
- [3] Ge X., Qu Z.: Optimization WIFI indoor positioning KNN algorithm location-based fingerprint. 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 2016, 135–137.
- [4] Guo L. et al.: From signal to image: Capturing fine-grained human poses with commodity Wi-Fi. IEEE Communications Letters 24(4), 2019, 802–806.
- [5] Jadhav S. D., Channe H. P.: Comparative study of K-NN, Naive Bayes and decision tree classification techniques. International Journal of Science and Research (IJSR) 5(1), 2016, 1842–1845.
- [6] Kato S. et al.: CSI2Image: Image reconstruction from channel state information using generative adversarial networks. IEEE Access 9, 2021, 47154–47168.
- [7] Kefayati M. H., Pourahmadi V., Aghaeinia H.: Wi2Vi: Generating video frames from WiFi CSI samples. IEEE Sensors Journal 20(19), 2020, 11463–11473.
- [8] Konings D. et al.: The effects of interference on the RSSI values of a ZigBee based indoor localization system. 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). New Zealand, Auckland, 2017, 1–5 [https://doi.org/10.1109/M2VIP.2017.8211460].
- [9] Lemic F. et al.: Experimental decomposition of the performance of fingerprinting-based localization algorithms. International Conference on Indoor Positioning and Indoor Navigation (IPIN). Korea (South), Busan, 2014, 355–364 [https://doi.org/10.1109/IPIN.2014.7275503].
- [10] Li Z. et al.: A passive WiFi source localization system based on fine-grained power-based trilateration. IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). USA, Boston, MA, 2015, 1–9 [https://doi.org/10.1109/WoWMoM.2015.7158147].
- [11] Lin T.-N., Lin P.-C.: Performance comparison of indoor positioning techniques based on location fingerprinting in wireless networks. International Conference on Wireless Networks, Communications and Mobile Computing – vol. 2. USA, Maui, HI, 2005, 1569–1574 [https://doi.org/10.1109/WIRLES.2005.1549647].
- [12] Mackey A. et al.: Improving BLE beacon proximity estimation accuracy through Bayesian filtering. IEEE Internet of Things Journal 7(4), 2020, 3160–3169.
- [13] Mustaquim S. M. S. et al.: A resource utilizing approach towards implementing indoor localization using Wi-Fi network. 4th International Conference on Advances in Electrical Engineering (ICAEE). Bangladesh, Dhaka, 2017, 308–313 [https://doi.org/10.1109/ICAEE.2017.8255372].
- [14] Ou C.-W. et al.: A ZigBee position technique for indoor localization based on proximity learning. IEEE International Conference on Mechatronics and Automation (ICMA). Japan, Takamatsu, 2017, 875–880 [https://doi.org/10.1109/ICMA.2017.8015931].
- [15] Radoi I. et al.: Indoor positioning inside an office building using BLE. 21st International Conference on Control Systems and Computer Science (CSCS). Romania, Bucharest, 2017, 159–164.
- [16] Rezazadeh J. et al.: Novel iBeacon placement for indoor positioning in IoT. IEEE Sensors Journal 18(24), 2018, 10240–10247.
- [17] RSSI Fingerprinting Dataset [https://github.com/pspachos/RSSI-Dataset-for-Indoor-Localization-Fingerprinting] (available 10.05.2024).
- [18] Rusli M. E. et al.: An improved indoor positioning algorithm based on rssi-trilateration technique for Internet of Things (IoT). International Conference on Computer and Communication Engineering (ICCCE). Malaysia, Kuala Lumpur, 2016, 72–77 [https://doi.org/10.1109/ICCCE.2016.28].
- [19] Song Q. et al.: CSI amplitude fingerprinting-based NB-IoT indoor localization. IEEE Internet of Things Journal 5(3), 2017, 1494–1504.
- [20] Spachos P., Plataniotis K.: BLE beacons in the smart city: Applications, challenges, and research opportunities. IEEE Internet of Things Magazine 3(1), 2020, 14–18.
- [21] Spachos P., Papapanagiotou I., Plataniotis K. N.: Microlocation for smart buildings in the era of the internet of things: A survey of technologies, techniques, and approaches. IEEE Signal Processing Magazine 35(5), 2018, 140–152.
- [22] Terán M. et al.: IoT-based system for indoor location using Bluetooth low energy. IEEE Colombian Conference on Communications and Computing (COLCOM). Colombia, Cartagena, 2017, 1–6.
- [23] Wang X., Gao L., Mao S.: CSI phase fingerprinting for indoor localization with a deep learning approach. IEEE Internet of Things Journal 3(6), 2016, 1113–1123.
- [24] Wu C. et al.: WILL: Wireless indoor localization without site survey. IEEE Transactions on Parallel and Distributed systems 24(4), 2012, 839–848.
- [25] Xue W. et al.: Improved Wi-Fi RSSI measurement for indoor localization. IEEE Sensors Journal 17(7), 2017, 2224–2230.
- [26] Yiu S., Yang K.: Gaussian process assisted fingerprinting localization. IEEE Internet of Things Journal 3(5), 2015, 683–690.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-622fece0-5552-4b26-bf7a-9067d8f2f604
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.