PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative investigation on capture characteristics of chalcopyrite and hematite in PHGMS process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pulsating high-gradient magnetic separation (PHGMS) is a promising method of separating chalcopyrite from other minerals with similar floatability. However, the capture characteristics of chalcopyrite in the PHGMS process remain poorly understood. In this study, the difference in the capture capacity of chalcopyrite and hematite, a typical weak magnetic mineral, was theoretically compared. The effects of the key operating parameters, i.e., magnetic induction, slurry flow rate, and magnetic wire diameter, on the capture difference between chalcopyrite and hematite, were investigated through experimental verification. The comparison results showed that chalcopyrite shared a similar capture trend with hematite. The capture mass weight of the matrix decreased with an increase in the pulsating frequency, slurry flow rate, and magnetic wire diameter, but it increased with improved magnetic induction. However, chalcopyrite exhibited a smaller capture mass weight due to its lower susceptibility, which required a higher magnetic induction (1.4 T), slower flow rate (1.5 cm/s), lower pulsating frequency (150 rpm), and smaller matrix diameter (1 mm) for higher efficient recovery of chalcopyrite. As the magnetic induction increased from 0.8 T to 1.6 T, the chalcopyrite recovery improved from 65.84% to 75.80%. These findings provide valuable information for improving the utilization of chalcopyrite.
Rocznik
Strony
art. no. 185334
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan,China
autor
  • Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan,China
autor
  • Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan,China
autor
  • Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan,China
autor
  • Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan,China
Bibliografia
  • CHEN, L., XIONG, D., and HUANG, H., 2010. Pulsating high-gradient magnetic separation of fine hematite from tailings. Miner. Metall. Process. 26(3), 163-168.
  • CHEN, L., DING, L., ZHANG, H., and HUANG, J., 2014. Slice matrix analysis for combinatorial optimization of rod matrix in PHGMS. Miner. Eng. 58 (1), 104-107.
  • CHEN, L., LIU, W., ZENG, J., and REN, P., 2017. Quantitative investigation on magnetic capture of single wires in pulsating HGMS. Powder Technol. 313, 54-59.
  • CHEN, L., XIONG, T., XIONG, D., YANG, R., PENG, Y., SHAO, Y., XU, J., and ZENG, J., 2021. Pulsating HGMS for industrial separation of chalcopyrite from fine copper-molybdenun co-flotation concentrate. Miner. Eng. 170, 106967.
  • LUO, Q., SHI, Q., LIU, D., LI, B., and JIN, S., 2022. Effect of deep oxidation of chalcopyrite on surface properties and flotation performance. Int. J. Min. Sci. Technol. 32(4), 907-914.
  • LIU, X., and ZHANG, X., 2024. Welan gum as a new depressant for the flotation separation of chalcopyrite from talc. Chem. Phys. 578, 112139.
  • LIU, S., 1994. Magnetoelectric beneficiation. Central South University of Technology Press. 337 (in Chinese).
  • MAHAJAN, V., MISRA, M., and ZHONG, K., 2007. Enhanced leaching of copper from chalcopyrite in hydrogen peroxideglycol system. Miner. Eng. 20(7), 670-674.
  • MULLIKEN, R. S. 1955. Electronic population analysis on LCAO–MO molecular wave functions. I. Chem. Phys. 23(10), 1833.
  • OLIVEIRA, C., LIMA, G. F., ABREU, H. A and DUARTE, H. A., 2012. Reconstruction of the chalcopyrite surfaces—a DFT study. Chem. Phys. 116(10), 6357-6366.
  • QIU, X., YANG, H., CHEN, G., TONG, L., JIN, Z., and ZHANG, Q., 2022a. Interface behavior of chalcopyrite during flotation from cyanide tailings. Int. J. Miner., Metall. Mater. 29(3), 439-445.
  • QIU, T., YANG, L., YAN, H., ZHANG, H., CUI, L., and LIU, X., 2022b. The mechanism of the effect of pre-magnetized butyl xanthate on chalcopyrite flotation. Minerals. 12(2), 209.
  • XIAN, Y., HONG, Y., LI, Y., LI, X., ZHANG, S., and CHEN, L., 2022. Pulsating high-gradient magnetic separation of chalcopyrite and talc. Miner. Eng. 178, 107410.
  • XUE, Z., WANG, Y., ZHENG, X., LU, D., SUN, Z., and HU, Z., 2022. Simulation of particle accumulation in high gradient magnetic separation based on static buildup model (SBM). Miner. Eng. 175, 107290.
  • YAN, X., FEI, Y., ZHONG, L., and WEI, W., 2020. Arsenic stabilization performance of a novel starch-modified Fe-Mn binary oxide colloid. The Science of the Total Environment. 707, 136064.
  • ZENG, J., TONG, X., REN, P., and CHEN, L., 2019. Theoretical description on size matching for magnetic element to independent particle in high gradient magnetic separation. Miner. Eng. 135, 74-82.
  • ZHAO, H., ZHANG, Y., ZHANG, X., QIAN, L., SUN, M., YANG, Y., ZHANG, Y., WANG, J., KIM, H., and QIU, G., 2019. The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview. Miner. Eng. 136, 140-154.
  • ZHENG, X., WANG, Y., and LU, D., 2015. A realistic description of influence of the magnetic field strength on high gradient magnetic separation. Miner. Eng. 79(1), 94-101.
  • ZHENG, X., WANG, Y., LU, D., and LI, X. 2017. Theoretical and experimental study on elliptic matrices in the transversal high gradient magnetic separation. Miner. Eng. 111(1), 68-78.
  • ZHENG, Y., HUANG, Y., HU, P., QIU, X., LV, J., and BAO, L., 2023. Flotation behaviors of chalcopyrite and galena using ferrate(VI) as a depressant. Int. J. Min. Sci. Technol. 33(1), 93-103.
  • ZYKIN, M.A., BUSHEVA, E.V., AMINOV, T.G., SHABUNINA, G.G., and EFIMOV, N.N., 2022. Synthesis and magnetic properties of CuGaSe2: Mn manganese-doped chalcopyrites. Russ. J. Inorg. Chem. 67(2), 150-157.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-622c778b-fe14-4466-97be-55f595a1fbd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.