PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical and Experimental Study of Crack Propagation in the Tensile Composite Plate with the Open Hole

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the thin-walled plate with the central open hole made of carbon-epoxy composite was investigated. The plate was tested in tension to investigate the mechanism of crack formation in the composite structure. The studies were carried out using two individual methods: experimental and numerical. In the experiment test, load was measured as the function of plate elongation. The Plate elongation was analysed using the Aramis optical non-contact measurement system. In the numerical study, the FEM model reproducing the experimental conditions was developed in the Abaqus software. The cracking process was modelled using the XFEM method (extended finite element method). This procedure allowed the of the composite to be examined over the full range of the tensile load. The behaviour of the plate with a circular open hole was investigated before damage symptoms and the damage initiation load was determined. The study continued to analyse the initial cracking and delamination of the laminate layers, together with crack propagation leading to cracking of all the laminate layers (complete failure of the composite structure). The novelty of this study is that it uses the popular XFEM method to describe the cracking and failure of the composite structure. In addition, the study proposes the novel method for determining the crack initiation and failure loads of the composite plate under tension, and the results obtained thereby are verified numerically.
Twórcy
  • Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
Bibliografia
  • 1. Campbell, F.C. Manufacturing Technology for Aerospace Structural Materials; 1st ed.; Elsevier: Amsterdam ; Boston, 2006.
  • 2. Kassapoglou, C. Design and Analysis of Composite Structures: With Applications to Aerospace Structures; AIAA education series; 1st ed.; American Institute of Aeronautics and Astronautics: Reston, Va. : United Kingdom : b John Wiley & Sons, 2010.
  • 3. Parlapalli, M.R., Soh, K.C., Shu, D.W., Ma, G. Experimental Investigation of Delamination Buckling of Stitched Composite Laminates. Composites Part A: Applied Science and Manufacturing. 2007; 38: 2024– 2033. DOI: 10.1016/j.compositesa.2007.05.001
  • 4. Turvey, G.J., Zhang, Y. A Computational and Experimental Analysis of the Buckling, Postbuckling and Initial Failure of Pultruded GRP Columns. Computers & Structures. 2006; 84: 1527–1537. DOI: 10.1016/j.compstruc.2006.01.028
  • 5. Teter, A., Kolakowski, Z. Coupled Dynamic Buckling of Thin-Walled Composite Columns with Open Cross-Sections. Composite Structures. 2013; 95: 28–34. DOI: 10.1016/j.compstruct.2012.08.006
  • 6. Kubiak, T., Mania, R.J. Hybrid versus FR Laminate Channel Section Columns – Buckling and Postbuckling Behaviour. Composite Structures. 2016; 154: 142–149. DOI: 10.1016/j.compstruct.2016.07.040.
  • 7. Gliszczynski, A., Kubiak, T., Wawer, K. Barely Visible Impact Damages of GFRP Laminate Profiles – An Experimental Study. Composites Part B: Engineering. 2019; 158: 10–17. DOI: 10.1016/j. compositesb.2018.09.044
  • 8. Gliszczynski, A., Wiącek, N. Experimental and Numerical Benchmark Study of Mode II Interlaminar Fracture Toughness of Unidirectional GFRP Laminates under Shear Loading Using the End-Notched Flexure (ENF) Test. Composite Structures. 2021; 258: 113190. DOI: 10.1016/j.compstruct.2020.113190
  • 9. Debski, H., Kubiak, T., Teter, A. Experimental Investigation of Channel-Section Composite Profiles’ Behavior with Various Sequences of Plies Subjected to Static Compression. Thin-Walled Structures. 2013; 71: 147–154. DOI: 10.1016/j.tws.2013.07.008
  • 10. Wong, P.M.H., Wang, Y.C. An Experimental Study of Pultruded Glass Fibre Reinforced Plastics Channel Columns at Elevated Temperatures. Composite Structures. 2007; 81: 84–95. DOI: 10.1016/j. compstruct.2006.08.001
  • 11. Orifici, A.C., Thomson, R.S., Degenhardt, R., Kling, A., Rohwer, K., Bayandor, J. Degradation Investiga- tion in a Postbuckling Composite Stiffened Fuselage Panel. Composite Structures. 2008; 82: 217–224. DOI: 10.1016/j.compstruct.2007.01.012
  • 12. Kim, S.-C., Kim, J.S., Yoon, H.-J. Experimental and Numerical Investigations of Mode I Delamination Behaviors of Woven Fabric Composites with Carbon, Kevlar and Their Hybrid Fibers. Int. J. Precis. Eng. Manuf. 2011; 12: 321–329. DOI: 10.1007/ s12541-011-0042-7
  • 13. Carlsson, L.A., Adams, D.F., Pipes, R.B. Experimental Characterization of Advanced Composite Materi- als; 4. ed.; CRC Press: Boca Raton, Fla., 2014.
  • 14. Fascetti, A., Feo, L., Nisticò, N., Penna, R. Web Flange Behavior of Pultruded GFRP I-Beams: A Lattice Model for the Interpretation of Experimental Results. Composites Part B: Engineering. 2016; 100: 257–269. DOI: 10.1016/j.compositesb.2016.06.058.
  • 15. Wysmulski, P. Load Eccentricity of Compressed Composite Z-Columns in Non-Linear State. Materials. 2022; 15: 7631. DOI: 10.3390/ma15217631
  • 16. Timoshenko, S., Gere, J.M. Theory of Elastic Stability; 2nd ed., Dover ed.; Dover Publications: Mineola, N.Y, 2009.
  • 17. Cheng, B., Zhao, J. Strengthening of Perforated Plates under Uniaxial Compression: Buckling Analysis. Thin-Walled Structures. 2010; 48: 905–914. DOI: 10.1016/j.tws.2010.06.001
  • 18. Jayashankarbabu B.S. Karisiddappa Stability Of Square Plate With Concentric Cutout. 2014. DOI: 10.5281/ZENODO.1337071.
  • 19. Lorenzini, G., Helbig, D., Silva, C., Real, M., Santos, E., Rocha, L. Numerical Evaluation of the Effect of Type and Shape of Perforations on the Buckling of Thin Steel Plates by Means of the Constructal Design Method. IJHT. 2016; 34: S9–S20. DOI: 10.18280/ijht.34Sp0102
  • 20. Durão, L.M.P., Matos, J.E., Loureiro, N.C., Esteves, J.L., Fernandes, S.C.F. Damage Propagation by Cyclic Loading in Drilled Carbon/Epoxy Plates. Materials. 2023; 16: 2688. DOI: 10.3390/ma16072688
  • 21. Joy Mathavan, J., Hassan, M.H., Xu, J., Franz, G. Hole Quality Observation in Single-Shot Drilling of CFRP/Al7075-T6 Composite Metal Stacks Using Customized Twist Drill Design. J. Compos. Sci. 2022; 6: 378. DOI: 10.3390/jcs6120378
  • 22. Wang, H., Wu, Y., Zhang, Y., Zhang, X. Influence of the Temperature-Dependent Characteristics of CFRP Mechanical Properties on the Critical Axial Force of Drilling Delamination. Polymers. 2023; 15: 680. DOI: 10.3390/polym15030680
  • 23. Elguedj, T., Gravouil, A., Combescure, A. Appropriate Extended Functions for X-FEM Simulation of Plastic Fracture Mechanics. Computer Methods in Applied Mechanics and Engineering. 2006; 195: 501–515. DOI: 10.1016/j.cma.2005.02.007
  • 24. Belytschko, T., Black, T. Elastic Crack Growth in Finite Elements with Minimal Remeshing. Int. J. Numer. Meth. Engng. 1999; 45: 601–620. DOI: 10.1002/ (SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  • 25. Melenk, J.M., Babuška, I. The Partition of Unity Finite Element Method: Basic Theory and Applications. Computer Methods in Applied Mechanics and Engineering. 1996; 139: 289–314. DOI: 10.1016/ S0045-7825(96)01087-0
  • 26. Nagashima, T., Suemasu, H. X-FEM Analyses of a Thin-Walled Composite Shell Structure with a Delamination. Computers & Structures. 2010; 88: 549–557. DOI: 10.1016/j.compstruc.2010.01.008
  • 27. Abaqus HTML Documentation; 2016.
  • 28. Liu, P.F., Gu, Z.P., Peng, X.Q., Zheng, J.Y. Finite Element Analysis of the Influence of Cohesive Law Parameters on the Multiple Delamination Behaviors of Composites under Compression. Composite Structures. 2015; 131: 975– 86.DOI:10.1016/j.compstruct.2015.06.058
  • 29. Rabinovitch, O. Cohesive Interface Modeling of Debonding Failure in FRP Strengthened Beams. J. Eng. Mech. 2008; 134: 578–588. DOI: 10.1061/ (ASCE)0733-9399(2008)134:7(578)
  • 30. Fabbrocino, F., Funari, M.F., Greco, F., Lonetti, P., Luciano, R., Penna, R. Dynamic Crack Growth Based on Moving Mesh Method. Composites Part B: Engineering. 2019; 174: 107053. DOI: 10.1016/j. compositesb.2019.107053
  • 31. Duarte, A.P.C., Díaz Sáez, A., Silvestre, N. Comparative Study between XFEM and Hashin Damage Criterion Applied to Failure of Composites. Thin-Walled Structures. 2017; 115: 277–288. DOI:10.1016/j.tws.2017.02.020
  • 32. Rozylo, P., Wysmulski, P. Failure Analysis of Thin Walled Composite Profiles Subjected to Axial Compression Using Progressive Failure Analysis (PFA) and Cohesive Zone Model (CZM). Composite Structures. 2021; 262: 113597. DOI:10.1016/j. compstruct.2021.113597
  • 33. Falkowicz, K., Ferdynus, M., Rozylo, P. Experimental and Numerical Analysis of Stability and Failure of Compressed Composite Plates. Composite Structures. 2021; 263: 113657. DOI: 10.1016/j. compstruct.2021.113657
  • 34. Kubiak, T., Samborski, S., Teter, A. Experimental Investigation of Failure Process in Compressed Channel-Section GFRP Laminate Columns Assisted with the Acoustic Emission Method. Composite Structures. 2015; 133: 921–929. DOI: 10.1016/j. compstruct.2015.08.023
  • 35. Banat, D., Mania, R.J. Failure Assessment of Thin-Walled FML Profiles during Buckling and Postbuckling Response. Composites Part B: Engineering. 2017; 112: 278–289. DOI: 10.1016/j. compositesb.2017.01.001
  • 36. Barbero, E.J., Cosso, F.A. Determination of Material Parameters for Discrete Damage Mechanics Analysis of Carbon-Epoxy Laminates. Composites Part B: Engineering. 2014; 56: 638–646. DOI: 10.1016/j.compositesb.2013.08.084
  • 37. Różyło, P., Falkowicz, K. Stability and Failure Analysis of Compressed Thin-Walled Composite Structures with Central Cut-out, Using Three Advanced Independent Damage Models. Composite Structures. 2021; 273: 114298. DOI: 10.1016/j.compstruct.2021.114298
  • 38. Różyło, P. Comparison of Failure for Thin-Walled Composite Columns. Materials. 2021; 15: 167. DOI: 10.3390/ma15010167
  • 39. Rozylo, P. Failure Phenomenon of Compressed Thin-Walled Composite Columns with Top-Hat Cross-Section for Three Laminate Lay-Ups. Composite Structures. 2023; 304: 116381. DOI: 10.1016/j.compstruct.2022.116381
  • 40. Falkowicz, K. Experimental and Numerical Failure Analysis of Thin-Walled Composite Plates Using Progressive Failure Analysis. Composite Structures. 2023; 305: 116474. DOI: 10.1016/j.compstruct.2022.116474
  • 41. Kurşun, A., Şenel, M., Enginsoy, H.M. Experimental and Numerical Analysis of Low Velocity Impact on a Preloaded Composite Plate. Advances in Engineering Software. 2015; 90: 41–52. DOI: 10.1016/j. advengsoft.2015.06.010
  • 42. Wysmulski, P., Debski, H. The Analysis of Sensitivity to Eccentric Load of Compressed Thin-Walled Laminate Columns.; Depok, Indonesia. 2019; 020006.
  • 43. Wysmulski, P. The Effect of Load Eccentricity on the Compressed CFRP Z-Shaped Columns in the Weak Post-Critical State. Composite Structures. 2022; 301: 116184. DOI: 10.1016/j.compstruct.2022.116184
  • 44. Wu, M.Q., Zhang, W., Niu, Y. Experimental and Numerical Studies on Nonlinear Vibrations and Dynamic Snap-through Phenomena of Bistable Asymmetric Composite Laminated Shallow Shell under Center Foundation Excitation. European Journal of Mechanics - A/Solids. 2021; 89: 104303. DOI: 10.1016/j.euromechsol.2021.104303
  • 45. Samborski, S., Gliszczynski, A., Rzeczkowski, J., Wiacek, N. Mode I Interlaminar Fracture of Glass/ Epoxy Unidirectional Laminates. Part I: Experimental Studies. Materials. 2019; 12: 1607. DOI: 10.3390/ma12101607
  • 46. Rogala, M., Gajewski, J. Numerical Analysis of Porous Materials Subjected to Oblique Crushing Force. J. Phys.: Conf. Ser. 2021; 1736: 012025. DOI: 10.1088/1742-6596/1736/1/012025
  • 47. Grzejda, R., Warzecha, M., Urbanowicz, K. Determination of the Preload of Bolts for Structural Health Monitoring of a Multi-Bolted Joint: FEM Approach. Lubricants. 2022; 10: 75. DOI: 10.3390/ lubricants10050075
  • 48. Gliszczynski, A., Samborski, S., Wiacek, N., Rzeczkowski, J. Mode I Interlaminar Fracture of Glass/Epoxy Unidirectional Laminates. Part II: Numerical Analysis. Materials. 2019; 12: 1604. DOI: 10.3390/ma12101604
  • 49. Jonak, J., Karpiński, R., Wójcik, A., Siegmund, M., Kalita, M. Determining the Effect of Rock Strength Parameters on the Breakout Area Utilizing the New Design of the Undercut/Breakout Anchor. Materials. 2022; 15: 851. DOI: 10.3390/ma15030851
  • 50. Shao, S., Wu, Y., Fu, H., Feng, S., Zhang, J. Numerical Investigation on the Mechanical Properties of Vault Void Lining and Steel Plate Strengthening. Materials. 2023; 16: 789. DOI: 10.3390/ma16020789
  • 51. Hao, R., Wen, Z., Xin, H., Lin, W. Fatigue Life Prediction of Notched Details Using SWT Model and LEFM-Based Approach. Materials. 2023; 16: 1942. DOI: 10.3390/ma16051942
  • 52. Buccino, F., Cervellera, F., Ghidini, M., Marini, R., Bagherifard, S., Vergani, L.M. Isolating the Role of Bone Lacunar Morphology on Static and Fatigue Fracture Progression through Numerical Simulations. Materials. 2023; 16: 1931. DOI: 10.3390/ma16051931
  • 53. Wang, F., Wei, Z., Li, P., Yu, L., Huang, W. Initial Crack Propagation and the Influence Factors of Aircraft Pipe Pressure. Materials. 2019; 12: 3098. DOI: 10.3390/ma12193098
  • 54. Wysmulski, P., Falkowicz, K., Filipek, P. Buckling State Analysis of Compressed Composite Plates with Cut-Out. Composite Structures. 2021; 274: 114345. DOI: 10.1016/j.compstruct.2021.114345
  • 55. Wysmulski, P. Non-Linear Analysis of the Postbuckling Behaviour of Eccentrically Compressed Composite Channel-Section Columns. Composite Structures. 2023; 305: 116446. DOI: 10.1016/j. compstruct.2022.116446
  • 56. Falkowicz, K., Valvo, P. Influence of Composite Lay-Up on the Stability of Channel-Section Profiles Weakened by Cut-Outs – A Numerical Investigation. Adv. Sci. Technol. Res. J. 2023; 17: 108–115. DOI: 10.12913/22998624/156635
  • 57. Różyło, P., Smagowski, W., Paśnik, J. Experimental Research in the Aspect of Determining the Mechanical and Strength Properties of the Composite Material Made of Carbon-Epoxy Composite. Adv. Sci. Technol. Res. J. 2023; 17: 232–246. DOI: 10.12913/22998624/161598
  • 58. D30 Committee Test Method for Open-Hole Tensile Strength of Polymer Matrix Composite Laminates; ASTM International.
  • 59. Jonak, J., Karpinski, R., Wojcik, A., Siegmund, M. The Effect of Undercut Anchor Diameter on the Rock Failure Cone Area in Pullout Tests. ASTRJ 2022; 16.
  • 60. Jonak, J., Karpiński, R., Wójcik, A. Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium—Part II. Materials. 2021; 14: 3880. DOI: 10.3390/ma14143880
  • 61. Nozdrzykowski, K., Grządziel, Z., Grzejda, R., Warzecha, M., Stępień, M. An Analysis of Reaction Forces in Crankshaft Support Systems. Lubricants. 2022; 10: 151. DOI: 10.3390/lubricants10070151
  • 62. Rzeczkowski, J., Paśnik, J., Samborski, S. Mode III Numerical Analysis of Composite Laminates with Elastic Couplings in Split Cantilever Beam Configuration. Composite Structures. 2021; 265: 113751. DOI: 10.1016/j.compstruct.2021.113751
  • 63. Grzejda, R. Thermal Strength Analysis of a Steel Bolted Connection under Bolt Loss Conditions. EiN. 2022; 24: 269–274. DOI: 10.17531/ein.2022.2.8
  • 64. Remmers, J., Deborst, R., Needleman, A. The Simulation of Dynamic Crack Propagation Using the Cohesive Segments Method. Journal of the Mechanics and Physics of Solids. 2008; 56: 70–92. DOI: 10.1016/j.jmps.2007.08.003
  • 65. Ventura, G., Benvenuti, E. Equivalent Polynomials for Quadrature in Heaviside Function Enriched Elements: Equivalent Polynomials For Heaviside Func- tion Enriched Elements. Int. J. Numer. Meth. Engng. 2015; 102: 688–710. DOI: 10.1002/nme.4679
  • 66. Rogala, M., Gajewski, J., Ferdynus, M. The Effect of Geometrical Non-Linearity on the Crashworthiness of Thin-Walled Conical Energy-Absorbers. Materials. 2020; 13: 4857. DOI: 10.3390/ma13214857
  • 67. Jonak, J., Karpiński, R., Wójcik, A. Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium. Materials. 2021; 14: 2371. DOI: 10.3390/ma14092371
  • 68. Jonak, J., Karpiński, R., Wójcik, A. Numerical Analysis of Undercut Anchor Effect on Rock. J. Phys.: Conf. Ser. 2021; 2130: 012011. DOI: 10.1088/1742-6596/2130/1/012011
  • 69. Jonak, J., Karpiński, R., Wójcik, A. Numerical Analysis of the Effect of Embedment Depth on the Geometry of the Cone Failure. J. Phys.: Conf. Ser. 2021; 2130: 012012. DOI: 10.1088/1742-6596/2130/1/012012
  • 70. Jaszak, P., Skrzypacz, J., Borawski, A., Grzejda, R. Methodology of Leakage Prediction in Gasketed Flange Joints at Pipeline Deformations. Materials. 2022; 15: 4354. DOI: 10.3390/ma15124354
  • 71. Rogala, M., Gajewski, J., Gawdzińska, K. Crash-worthiness Analysis of Thin-Walled Aluminum Columns Filled with Aluminum–Silicon Carbide Composite Foam. Composite Structures. 2022; 299: 116102. DOI: 10.1016/j.compstruct.2022.116102
  • 72. Samborski, S., Rzeczkowski, J. Numerical Model-ing and Experimental Testing of the DCB Laminated Composite Beams with Mechanical Couplings.; Lublin, Poland. 2018; 080010.
  • 73. Rzeczkowski, J., Paśnik, J., Samborski, S. Corrigendum to “Mode III Numerical Analysis of Composite Laminates with Elastic Couplings in Split Cantilever Beam Configuration.” Composite Structures. 2021; 266: 113920. DOI: 10.1016/j. compstruct.2021.113920
  • 74. Paśnik, J., Samborski, S., Rzeczkowski, J. Application of the CZM Technique to Delamination Analysis of Coupled Laminate Beams. IOP Conf. Ser.: Mater. Sci. Eng. 2018; 416: 012075. DOI: 10.1088/1757-899X/416/1/012075
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-62251bf9-d12a-4286-8e46-ce56dc4b5592
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.